58 research outputs found

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)

    2013 WSES guidelines for management of intra-abdominal infections

    Get PDF
    Peer reviewe

    Regional and whole-body markers of nitric oxide production following hyperemic stimuli

    No full text
    The measurement of nitric oxide (NO) bioavailability is of great clinical interest in the assessment of vascular health. However, NO is rapidly oxidized to form nitrite and nitrate and thus its direct detection in biological systems is difficult. Venous plasma nitrite (nM concentrations) has been shown to be a marker of forearm NO production following pharmacological stimulation of the endothelium utilizing acetylcholine (Ach). In the present study, we demonstrate, within 15 apparently healthy subjects (34.1 ± 7.3 years), that reactive hyperemia of the forearm, a physiological endothelial stimulus, results in a 52.5% increase in mean plasma nitrite concentrations (415 ± 64.0 to 634 ± 57.1 nM, P = 0.015). However, plasma nitrite is readily oxidized to nitrate within plasma, and thus its utility as a marker of NO production within the clinical setting may be limited. Alternatively, NOx (predominantly nitrate) is relatively stable in plasma (μM concentrations), but is produced by sources other than the vasculature and has been shown to be unsuitable as a measure of localized NO production. We reasoned that the principle source of NOx generation during exercise is NO production and thus have examined the change in NOx following treadmill exercise stress. In this study, 12 apparently healthy subjects showed an increase (from baseline) in venous NOx at peak effort and during recovery (12 ± 9.1 and 17 ± 15.3 μM respectively, P < 0.05). In contrast, 10 subjects with cardiovascular disease showed no significant increases. Additionally, a correlation between VO2peak and the change in circulating NOx (r2 = 0.4585, P ≤ 0.01) indicated the subjects who could exercise hardest also produced the most NO
    corecore