466 research outputs found
Methods and systems for detection of radionuclides
Disclosed are materials and systems useful in determining the existence of radionuclides in an aqueous sample. The materials provide the dual function of both extraction and scintillation to the systems. The systems can be both portable and simple to use, and as such can beneficially be utilized to determine presence and optionally concentration of radionuclide contamination in an aqueous sample at any desired location and according to a relatively simple process without the necessity of complicated sample handling techniques. The disclosed systems include a one-step process, providing simultaneous extraction and detection capability, and a two-step process, providing a first extraction step that can be carried out in a remote field location, followed by a second detection step that can be carried out in a different location
Synthetic and Evolutionary Construction of a Chlorate-Reducing Shewanella oneidensis MR-1.
UnlabelledDespite evidence for the prevalence of horizontal gene transfer of respiratory genes, little is known about how pathways functionally integrate within new hosts. One example of a mobile respiratory metabolism is bacterial chlorate reduction, which is frequently encoded on composite transposons. This implies that the essential components of the metabolism are encoded on these mobile elements. To test this, we heterologously expressed genes for chlorate reduction from Shewanella algae ACDC in the non-chlorate-reducing Shewanella oneidensis MR-1. The construct that ultimately endowed robust growth on chlorate included cld, a cytochrome c gene, clrABDC, and two genes of unknown function. Although strain MR-1 was unable to grow on chlorate after initial insertion of these genes into the chromosome, 11 derived strains capable of chlorate respiration were obtained through adaptive evolution. Genome resequencing indicated that all of the evolved chlorate-reducing strains replicated a large genomic region containing chlorate reduction genes. Contraction in copy number and loss of the ability to reduce chlorate were also observed, indicating that this phenomenon was extremely dynamic. Although most strains contained more than six copies of the replicated region, a single strain with less duplication also grew rapidly. This strain contained three additional mutations that we hypothesized compensated for the low copy number. We remade the mutations combinatorially in the unevolved strain and determined that a single nucleotide polymorphism (SNP) upstream of cld enabled growth on chlorate and was epistatic to a second base pair change in the NarP binding sequence between narQP and nrfA that enhanced growth.ImportanceThe ability of chlorate reduction composite transposons to form functional metabolisms after transfer to a new host is an important part of their propagation. To study this phenomenon, we engineered Shewanella oneidensis MR-1 into a chlorate reducer. We defined a set of genes sufficient to endow growth on chlorate from a plasmid, but found that chromosomal insertion of these genes was nonfunctional. Evolution of this inoperative strain into a chlorate reducer showed that tandem duplication was a dominant mechanism of activation. While copy number changes are a relatively rapid way of increasing gene dosage, replicating almost 1 megabase of extra DNA is costly. Mutations that alleviate the need for high copy number are expected to arise and eventually predominate, and we identified a single nucleotide polymorphism (SNP) that relieved the copy number requirement. This study uses both rational and evolutionary approaches to gain insight into the evolution of a fascinating respiratory metabolism
(Per)chlorate-reducing bacteria can utilize aerobic and anaerobic pathways of aromatic degradation with (per)chlorate as an electron acceptor.
UnlabelledThe pathways involved in aromatic compound oxidation under perchlorate and chlorate [collectively known as (per)chlorate]-reducing conditions are poorly understood. Previous studies suggest that these are oxygenase-dependent pathways involving O2 biogenically produced during (per)chlorate respiration. Recently, we described Sedimenticola selenatireducens CUZ and Dechloromarinus chlorophilus NSS, which oxidized phenylacetate and benzoate, two key intermediates in aromatic compound catabolism, coupled to the reduction of perchlorate or chlorate, respectively, and nitrate. While strain CUZ also oxidized benzoate and phenylacetate with oxygen as an electron acceptor, strain NSS oxidized only the latter, even at a very low oxygen concentration (1%, vol/vol). Strains CUZ and NSS contain similar genes for both the anaerobic and aerobic-hybrid pathways of benzoate and phenylacetate degradation; however, the key genes (paaABCD) encoding the epoxidase of the aerobic-hybrid phenylacetate pathway were not found in either genome. By using transcriptomics and proteomics, as well as by monitoring metabolic intermediates, we investigated the utilization of the anaerobic and aerobic-hybrid pathways on different electron acceptors. For strain CUZ, the results indicated utilization of the anaerobic pathways with perchlorate and nitrate as electron acceptors and of the aerobic-hybrid pathways in the presence of oxygen. In contrast, proteomic results suggest that strain NSS may use a combination of the anaerobic and aerobic-hybrid pathways when growing on phenylacetate with chlorate. Though microbial (per)chlorate reduction produces molecular oxygen through the dismutation of chlorite (ClO2(-)), this study demonstrates that anaerobic pathways for the degradation of aromatics can still be utilized by these novel organisms.ImportanceS. selenatireducens CUZ and D. chlorophilus NSS are (per)chlorate- and chlorate-reducing bacteria, respectively, whose genomes encode both anaerobic and aerobic-hybrid pathways for the degradation of phenylacetate and benzoate. Previous studies have shown that (per)chlorate-reducing bacteria and chlorate-reducing bacteria (CRB) can use aerobic pathways to oxidize aromatic compounds in otherwise anoxic environments by capturing the oxygen produced from chlorite dismutation. In contrast, we demonstrate that S. selenatireducens CUZ is the first perchlorate reducer known to utilize anaerobic aromatic degradation pathways with perchlorate as an electron acceptor and that it does so in preference over the aerobic-hybrid pathways, regardless of any oxygen produced from chlorite dismutation. D. chlorophilus NSS, on the other hand, may be carrying out anaerobic and aerobic-hybrid processes simultaneously. Concurrent use of anaerobic and aerobic pathways has not been previously reported for other CRB or any microorganisms that encode similar pathways of phenylacetate or benzoate degradation and may be advantageous in low-oxygen environments
Inhibition of microbial sulfate reduction in a flow-through column system by (per)chlorate treatment.
Microbial sulfate reduction is a primary cause of oil reservoir souring. Here we show that amendment with chlorate or perchlorate [collectively (per)chlorate] potentially resolves this issue. Triplicate packed columns inoculated with marine sediment were flushed with coastal water amended with yeast extract and one of nitrate, chlorate, or perchlorate. Results showed that although sulfide production was dramatically reduced by all treatments, effluent sulfide was observed in the nitrate (10 mM) treatment after an initial inhibition period. In contrast, no effluent sulfide was observed with (per)chlorate (10 mM). Microbial community analyses indicated temporal community shifts and phylogenetic clustering by treatment. Nitrate addition stimulated Xanthomonadaceae and Rhizobiaceae growth, supporting their role in nitrate metabolism. (Per)chlorate showed distinct effects on microbial community structure compared with nitrate and resulted in a general suppression of the community relative to the untreated control combined with a significant decrease in sulfate reducing species abundance indicating specific toxicity. Furthermore, chlorate stimulated Pseudomonadaceae and Pseudoalteromonadaceae, members of which are known chlorate respirers, suggesting that chlorate may also control sulfidogenesis by biocompetitive exclusion of sulfate-reduction. Perchlorate addition stimulated Desulfobulbaceae and Desulfomonadaceae, which contain sulfide oxidizing and elemental sulfur-reducing species respectively, suggesting that effluent sulfide concentrations may be controlled through sulfur redox cycling in addition to toxicity and biocompetitive exclusion. Sulfur isotope analyses further support sulfur cycling in the columns, even when sulfide is not detected. This study indicates that (per)chlorate show great promise as inhibitors of sulfidogenesis in natural communities and provides insight into which organisms and respiratory processes are involved
Spatial Modeling of Common Raven Density and Occurrence Helps Guide Landscape Management Within Great Basin Sagebrush Ecosystems
Common ravens (Corvus corax; ravens) are a behaviorally flexible nest predator of several avian species, including species of conservation concern. Movement patterns based on life history phases, particularly territoriality of breeding birds and transiency of nonbreeding birds, are thought to influence the frequency and efficacy of nest predation. As such, predicting where on the landscape territorial resident and non-territorial transient birds may be found in relation to the distribution of sensitive prey is of increasing importance to managers and conservationists. From 2007 to 2019, we conducted raven point count surveys between mid-March and mid-September across 43 different field sites representing typical sagebrush (Artemisia spp.) ecosystems of the Great Basin, USA. The surveys conducted during 2007–2016 were used in previously published maps of raven occurrence and density. Here, we examined the relationship between occurrence and density of ravens using spatially explicit predictions from 2 previously published studies and differentiate areas occupied by higher concentrations of resident ravens as opposed to transients. Surveys conducted during 2017–2019 were subsequently used to evaluate the predicted trends from our analytical approach. Specifically, we used residuals from a generalized linear regression to establish the relationship between occurrence and density, which ultimately resulted in a spatially explicit categorical map that identifies areas of resident versus transient ravens. We evaluated mapped categories using independently collected observed raven group sizes from the 2017–2019 survey data, as well as an independent dataset of global positioning system locations of resident and transient individuals monitored during 2019–2020. We observed moderate agreement between the mapped categories and independent datasets for both evaluation approaches. Our map provides broad inference about spatial variation in potential predation risk from ravens for species such as greater sage-grouse (Centrocercus urophasianus) and can be used as a valuable spatial layer for decision support tools aimed at guiding raven management decisions and, ultimately, improving survival and reproduction of sensitive prey within the Great Basin
SMaRT: A Science-based Tiered Framework for Common Ravens
Large-scale increases and expansion of common raven (Corvus corax; raven) populations are occurring across much of North America, leading to increased negative consequences for livestock and agriculture, human health and safety, and sensitive species conservation. We describe a science-based adaptive management framework that incorporates recent quantitative analyses and mapping products for addressing areas with elevated raven numbers and minimizing potential adverse impacts to sensitive species, agricultural damage, and human safety. The framework comprises 5 steps: (1) desktop analysis; (2) field assessments; (3) comparison of raven density estimates to an ecological threshold (in terms of either density or density plus distance to nearest active or previous nest); (4) prescribing management options using a 3-tiered process (i.e., habitat improvements, subsidy reductions, and direct actions using StallPOPd.V4 software); and (5) post-management monitoring. The framework is integrated within the Science-based Management of Ravens Tool (SMaRT), a web-based application outfitted with a user-friendly interface that guides managers through each step to develop a fully customized adaptive plan for raven management. In the SMaRT interface, users can: (1) interact with pre-loaded maps of raven occurrence and density and define their own areas of interest within the Great Basin to delineate proposed survey or treatment sites; (2) enter site-level density estimates from distance sampling methods or perform estimation of raven densities using the rapid assessment protocol that we provide; (3) compare site-level density estimates to an identified ecological threshold; and (4) produce a list of potential management options for their consideration. The SMaRT supports decision-making by operationalizing scientific products for raven management and facilitates realization of diverse management goals including sensitive species conservation, protection of livestock and agriculture, safeguarding human health, and addressing raven overabundance and expansion. We illustrate the use of the framework through SMaRT using an example of greater sage-grouse (Centrocercus urophasianus) conservation efforts within the Great Basin, USA
Attenuating Sulfidogenesis in a Soured Continuous Flow Column System With Perchlorate Treatment
Hydrogen sulfide production by sulfate reducing bacteria (SRB) is the primary cause of oil reservoir souring. Amending environments with chlorate or perchlorate [collectively denoted (per)chlorate] represents an emerging technology to prevent the onset of souring. Recent studies with perchlorate reducing bacteria (PRB) monocultures demonstrated that they have the innate capability to enzymatically oxidize sulfide, thus PRB may offer an effective means of reversing souring. (Per)chlorate may be effective by (i) direct toxicity to SRB; (ii) competitive exclusion of SRB by PRB; or (iii) reversal of souring through re-oxidation of sulfide by PRB. To determine if (per)chlorate could sweeten a soured column system and assign a quantitative value to each of the mechanisms we treated columns flooded with San Francisco bay water with temporally decreasing amounts (50, 25, and 12.5 mM) of (per)chlorate. Geochemistry and the microbial community structure were monitored and a reactive transport model was developed, Results were compared to columns treated with nitrate or untreated. Souring was reversed by all treatments at 50 mM but nitrate-treated columns began to re-sour when treatment concentrations decreased (25 mM). Re-souring was only observed in (per)chlorate-treated columns when concentrations were decreased to 12.5 mM and the extent of re-souring was less than the control columns. Microbial community analyses indicated treatment-specific community shifts. Nitrate treatment resulted in a distinct community enriched in genera known to perform sulfur cycling metabolisms and genera capable of nitrate reduction. (Per)chlorate treatment enriched for (per)chlorate reducing bacteria. (Per)chlorate treatments only enriched for sulfate reducing organisms when treatment levels were decreased. A reactive transport model of perchlorate treatment was developed and a baseline case simulation demonstrated that the model provided a good fit to the effluent geochemical data. Subsequent simulations teased out the relative role that each of the three perchlorate inhibition mechanisms played during different phases of the experiment. These results indicate that perchlorate addition is an effective strategy for both souring prevention and souring reversal. It provides insight into which organisms are involved, and illuminates the interactive effects of the inhibition mechanisms, further highlighting the versatility of perchlorate as a sweetening agent
Addressing social issues in a universal HIV test and treat intervention trial (ANRS 12249 TasP) in South Africa: methods for appraisal
Background: The Universal HIV Test and Treat (UTT) strategy represents a challenge for science, but is also a challenge for individuals and societies. Are repeated offers of provider-initiated HIV testing and immediate antiretroviral therapy (ART) socially-acceptable and can these become normalized over time? Can UTT be implemented without potentially adding to individual and community stigma, or threatening individual rights? What are the social, cultural and economic implications of UTT for households and communities? And can UTT be implemented within capacity constraints and other threats to the overall provision of HIV services? The answers to these research questions will be critical for routine implementation of UTT strategies.
Methods/design: A social science research programme is nested within the ANRS 12249 Treatment-as-Prevention (TasP) cluster-randomised trial in rural South Africa. The programme aims to inform understanding of the (i) social, economic and environmental factors affecting uptake of services at each step of the continuum of HIV prevention, treatment and care and (ii) the causal impacts of the TasP intervention package on social and economic factors at the individual, household, community and health system level. We describe a multidisciplinary, multi-level, mixed-method research protocol that includes individual, household, community and clinic surveys, and combines quantitative and qualitative methods.
Discussion: The UTT strategy is changing the overall approach to HIV prevention, treatment and care, and substantial social consequences may be anticipated, such as changes in social representations of HIV transmission, prevention, HIV testing and ART use, as well as changes in individual perceptions and behaviours in terms of uptake and frequency of HIV testing and ART initiation at high CD4. Triangulation of social science studies within the ANRS 12249 TasP trial will provide comprehensive insights into the acceptability and feasibility of the TasP intervention package at individual, community, patient and health system level, to complement the trial's clinical and epidemiological outcomes. It will also increase understanding of the causal impacts of UTT on social and economic outcomes, which will be critical for the long-term sustainability and routine UTT implementation. Trial registration: Clinicaltrials.gov: NCT01509508; South African Trial Register: DOH-27-0512-3974
Recombinant Fibrinogen Vlissingen/Frankfurt IV: THE DELETION OF RESIDUES 319 AND 320 FROM THE Îł CHAIN OF FIBRINOGEN ALTERS CALCIUM BINDING, FIBRIN POLYMERIZATION, CROSS-LINKING, AND PLATELET AGGREGATION
We synthesized a variant, recombinant fibrinogen modeled after the heterozygous dysfibrinogen Vlissingen/Frankfurt IV, a deletion of two residues, gammaAsn-319 and gammaAsp-320, located within the high affinity calcium-binding pocket. Turbidity studies showed no evidence of fibrin polymerization, although size exclusion chromatography, transmission electron microscopy, and dynamic light scattering studies showed small aggregates. These aggregates did not resemble normal protofibrils nor did they clot. Fibrinopeptide A release was normal, whereas fibrinopeptide B release was delayed approximately 3-fold. Plasmin cleavage of this fibrinogen was not changed by the presence of calcium or Gly-Pro-Arg-Pro, indicating that both the calcium-binding site and the "a" polymerization site were non-functional. We conclude that the loss of normal polymerization was due to the lack of "A-a" interactions. Moreover, functions associated with the C-terminal end of the gamma chain, such as platelet aggregation and factor XIII cross-linking, were also disrupted, suggesting that this deletion of two residues affected the overall structure of the C-terminal domain of the gamma chain
- …