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Abstract: Common ravens (Corvus corax; ravens) are a behaviorally flexible nest predator 
of several avian species, including species of conservation concern. Movement patterns 
based on life history phases, particularly territoriality of breeding birds and transiency of 
nonbreeding birds, are thought to influence the frequency and efficacy of nest predation. As 
such, predicting where on the landscape territorial resident and non-territorial transient birds 
may be found in relation to the distribution of sensitive prey is of increasing importance to 
managers and conservationists. From 2007 to 2019, we conducted raven point count surveys 
between mid-March and mid-September across 43 different field sites representing typical 
sagebrush (Artemisia spp.) ecosystems of the Great Basin, USA. The surveys conducted 
during 2007–2016 were used in previously published maps of raven occurrence and density. 
Here, we examined the relationship between occurrence and density of ravens using spatially 
explicit predictions from 2 previously published studies and differentiate areas occupied by 
higher concentrations of resident ravens as opposed to transients. Surveys conducted during 
2017–2019 were subsequently used to evaluate the predicted trends from our analytical 
approach. Specifically, we used residuals from a generalized linear regression to establish 
the relationship between occurrence and density, which ultimately resulted in a spatially 
explicit categorical map that identifies areas of resident versus transient ravens. We evaluated 
mapped categories using independently collected observed raven group sizes from the 2017–
2019 survey data, as well as an independent dataset of global positioning system locations 
of resident and transient individuals monitored during 2019–2020. We observed moderate 
agreement between the mapped categories and independent datasets for both evaluation 
approaches. Our map provides broad inference about spatial variation in potential predation 
risk from ravens for species such as greater sage-grouse (Centrocercus urophasianus) and 
can be used as a valuable spatial layer for decision support tools aimed at guiding raven 
management decisions and, ultimately, improving survival and reproduction of sensitive prey 
within the Great Basin.
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Common ravens (Corvus corax; ravens) are 
a behaviorally flexible predator species widely 
distributed throughout the northern hemi-
sphere (Boarman and Heinrich 1999; Harju et 
al. 2018). In western North America, ravens’ be-
havioral plasticity and opportunistic utilization 
of anthropogenic resources have led to dramat-

ic population increases over the past several 
decades (Boarman and Heinrich 1999, Sauer et 
al. 2017). Raven use of human-related food re-
sources (e.g., landfills, roadkill, cereal crops, ar-
tificial water resources) and habitat (e.g., trans-
mission towers, roads, housing, powerlines) 
are well documented (Knight and Kawashima 
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1993, Webb 2004, Kristan et al. 2004, Howe et al. 
2014, Coates et al. 2016a). In some areas, raven 
population increases have been tied directly to 
increases in human development (Austin 1971, 
Knight and Kawashima 1993, Kristan and Boar-
man 2003). As raven populations have grown, 
researchers and managers have increasingly 
documented negative relationships between ra-
ven occurrence or density and variation in nest 
and/or juvenile survival for several species, 
including species of conservation concern like 
snowy plovers (Charadrius nivosus; Burrell and 
Colwell 2012), desert tortoises (Gopherus agassi-
zii; Boarman 2003), marbled murrelets (Brachy-
ramphus marmoratus; Peery and Henry 2010), 
and greater sage-grouse (Centrocercus uropha-
sianus; sage-grouse; Bui et al. 2010, Coates et al. 
2010, Coates et al. 2020a). 

Predation by ravens is a complex phenom-
enon thought to be influenced by a multitude 
of factors, including but not limited to raven 
population demographics such as breeding 
status, age, foraging patterns, and movement 
behavior (Kristan and Boarman 2003, Webb et 
al. 2011, Howe and Coates 2015). Such demo-
graphics also impact raven population struc-
ture and distribution, which in turn may im-
pact the efficacy of management actions taken 
to mitigate raven predation (Bui et al. 2010). 
Traditionally, tools like species distribution 
models are used to map spatial heterogeneity 
in population distributions or demographics by 
mapping species occurrence or abundance in 
relation to environmental characteristics (Elith 
and Leathwick 2009, Merow et al. 2014). How-
ever, mapping species distribution in relation 
to demographic characteristics (e.g., breeding 
status, foraging patterns) remains challenging, 
especially for generalist species with broad 
ecological niches such as ravens (Guisan and 
Thuiller 2005, McPherson and Jetz 2007). Diffi-
culties in mapping population structure are nu-
merous, especially when population structure 
characteristics are behavioral in nature (e.g., 
movement strategy) or variable over time (e.g., 
breeding status). However, accurately mapping 
such demographics may not only improve un-
derstanding of raven populations and distribu-
tion but ultimately may improve the efficacy 
of management actions by focusing resources 
to demographic classes of interest like certain 
breeding statuses (Harju et al. 2018).

Transient ravens (hereafter, transients) tend 
to be nonbreeding juvenile or subadult indi-
viduals, are not territorial, and typically move 
nomadically across the landscape in varying 
group sizes (Loretto et al. 2017, Harju et al. 
2018). Transient ravens forage opportunisti-
cally as they move but will often aggregate in 
large numbers at anthropogenic point sources 
such as roadkill, landfills, center-pivot irriga-
tion, and other human-subsidized food re-
sources (Heinrich 1988, Restani et al. 2001, 
Loretto et al. 2017). Often, transient ravens 
will rely heavily on point sources but may still 
opportunistically forage in surrounding habi-
tat and prey on native species, a phenomenon 
known as “spillover” predation (Schneider 
2001, Kristan and Boarman 2003). Conversely, 
resident ravens (hereafter, residents) exhibit 
territorial behavior, where typically a breeding 
pair of adults defend a home range year-round 
and rarely leave their territory (Marzluff and 
Neatherlin 2006, Harju et al. 2018), though nest 
failure may lead to movements more character-
istic of transient nonbreeders (Harju et al. 2018). 
Resident breeders typically forage within their 
territory, developing long-term spatial memory 
of resource distribution and availability within 
their home range (Fagan et al. 2013, Beck et 
al. 2020). Because of their increased familiar-
ity with food resources within their territories, 
resident breeders may be more likely to target 
native prey items than nonbreeders that forage 
more opportunistically over larger areas (Bui et 
al. 2010, Harju et al. 2018, Daly et al. 2019), and 
localized observations of nesting ravens’ behav-
iors have lent support to this hypothesis (Howe 
and Coates 2015, Brussee and Coates 2018). By 
utilizing native prey as well as anthropogenic 
subsidies, when resident raven populations are 
large enough, their predation rates and impacts 
are decoupled from prey population dynamics 
(Courchamp et al. 2000, Kristan and Boarman 
2003). Although raven populations likely have 
some influence on prey demographic rates 
regardless of the raven population structure 
(e.g., age structure and proportion of breeding 
adults), their relative effects on prey species are 
likely to vary in relation to these factors.    

Because raven impacts to prey species may 
differ across space depending on relative 
concentrations of transients or residents, un-
derstanding the distribution and abundance 
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flocks of non-territorial ravens exhibiting so-
cial behavior, then estimated densities may be 
relatively high despite lower occurrence prob-
abilities. Areas with relatively high occurrence 
and high density imply that both resident and 
transient ravens may be present over time and 
should result in the highest overall densities. 
By considering spatially explicit relationships 
between both parameters, managers may be 
able to gain insight into the likely population 
structure across a region of interest and use this 
information to guide management decisions 
and actions.  

Estimations of occurrence and density are 
both useful metrics of population status, and 
their relationship has been well studied (Lin-
den et al. 2017, Parsons et al. 2017, Steenweg 
et al. 2018, Rogan et al. 2019). Occurrence es-
timates are based on repeated measures of the 
presence or absence of unmarked individuals at 
a defined site over time, and sites with high es-
timated occurrence are typically sites where the 
species of interest was detected across multiple 
sampling occasions at the same site (MacKenzie 
et al. 2002, MacKenzie and Royle 2005, Webb et 
al. 2014). In contrast, density estimates are de-
rived from counts of marked or unmarked indi-
viduals at a site, often with a form of correction 
for detection probability, and sites with high 
estimated density occur where large numbers 
of individuals were detected (Efford 2004, Ef-
ford et al. 2009, Keiter et al. 2017). Density es-
timates may also reflect the net effect of other 
population processes like survival, recruitment, 
and, for species such as ravens, behavioral pat-
terns such as sociality or territoriality (Both and 
Visser 2003, Rich et al. 2016, Rogan et al. 2019). 
True estimates of density and occurrence ac-
count for less than perfect detection of individ-
uals (P < 1) and often incorporate the influence 
of environmental factors such as habitat char-
acteristics, climatic conditions, distance to hu-
man structures or subsidies, and other environ-
mental conditions likely to impact the species 
of interest (MacKenzie et al. 2002, Efford and 
Dawson 2012, Webb et al. 2014). Additionally, 
both parameters are often modeled spatially 
across predefined regions of interest to draw 
conclusions about habitat quality or suitability 
and to make management decisions (Efford et 
al. 2009, Mateo-Tomás and Olea 2010, Ramsey 
et al. 2015, Evans and Rittenhouse 2018). Al-

of both resident breeders and transient non-
breeders at a broad, landscape level can influ-
ence management efforts to mitigate impacts 
of raven predation on sensitive prey species. 
For example, if habitats become saturated by 
territorial, resident ravens, the potential preda-
tion rates on prey may be greater than in situ-
ations where nonbreeding ravens occur more 
frequently but do not settle into resident behav-
ioral patterns. Importantly, both circumstances 
may result in relatively high raven densities, 
with the former possibly having a dispropor-
tionate negative effect on native prey species. 
Although such nuances in the predator–prey 
relationship involving ravens and other spe-
cies have long been suspected, the difficulty in 
studying these dynamics has largely prevented 
management efforts from focusing on problem 
areas beyond evaluations of local raven density 
(Bui et al. 2010, Dinkins et al. 2016, O’Neil et al. 
2018a, Coates et al. 2020a).      

Traditional methods for assessing distribu-
tion of residents and transients, including cap-
ture-mark-recapture techniques or deploying 
global positioning system (GPS) or very high 
frequency transmitters to monitor individuals 
over time are labor-intensive, expensive, and in 
many cases impractical at broad spatial scales 
(White 1982, Royle 2004, Rich et al. 2014). In-
stead, managers typically use noninvasive 
techniques like point counts of unmarked indi-
viduals to assess occurrence (ψ) or density (D̂), 
but these techniques are usually unable to dif-
ferentiate between resident and transient indi-
viduals because they do not assess individual 
behavior (MacKenzie et al. 2002, Efford 2004, 
Efford and Dawson 2012, Keiter et al. 2017). 
However, when considered together, relation-
ships between density and occurrence derived 
from survey data may still have informative 
value when considering generalized patterns 
from a landscape perspective. Because resi-
dents typically will use and defend home rang-
es while rarely leaving them, predicted densi-
ties in areas with resident ravens may remain 
relatively low despite high probability of occur-
rence (Lopez-Sepulcre and Kokko 2005, Bui et 
al. 2010). Conversely, areas with relatively low 
occurrence probability may imply areas where 
ravens are less likely to maintain presence over 
time (i.e., not residents), but if many transient 
individuals are detected, as is common among 
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tive surface that categorically identifies areas 
that might support different raven life history 
stages and delineates potential problem areas 
for elevated predation rates on sage-grouse or 
other species likely to be influenced by increas-
ing raven populations. 

Study area
Our study area encompassed sagebrush (Ar-

temisia spp.) ecosystems within the Great Basin 
region of the United States, including Idaho, 
Nevada, and portions of Oregon and Califor-
nia, USA (Figure 1). The Great Basin is largely a 
high elevation semi-arid desert ecosystem, with 
elevations ranging from 341–3,995 m. Annual 
precipitation throughout the region ranges 
from 79–1,291 mm, which mainly falls as winter 
snow and early spring rain (Pilliod et al. 2017). 
Land uses included rangeland (livestock graz-
ing primarily from cattle [Bos taurus], horses 
[Equus caballus], and domestic sheep [Ovis ar-
ies]), cropland agriculture (irrigated or dry), 
and federal Conservation Reserve Program. 
Vegetation communities were dominated by 
Wyoming big sagebrush (Artemisia tridentate 
wyomingensis), black sagebrush (A. nova), and 
low sagebrush (A. arbuscula) at low elevations 
(<2,100 m) and mountain big sagebrush (A. t. 
vaseyana) common at high elevations (>2,100 m; 
Coates et al. 2020a). Although the study area 
is largely a remote landscape with low human 
population density, human modifications of 
the environment are pronounced in the form 
of fragmentation from roads, electric transmis-
sion lines, communication towers, and indus-
trial developments (e.g., agriculture, mining, 
and energy). 

Methods
Data collection

From 2007 to 2019, we conducted raven point 
count surveys across 43 different field sites 
representing typical sagebrush ecosystems of 
the Great Basin. Surveys conducted between 
2007 and 2016 (Coates et al. 2020a) were used 
in the initial spatial estimation of raven occur-
rence and density, while surveys conducted 
from 2017 to 2019 were used to evaluate pre-
dicted trends with subsequent analyses. We 
conducted surveys between mid-March and 
mid-September across all field sites each year. 
At each survey location, observers documented 

though modeling of density and occurrence 
usually occurs independently in practice, the 2 
estimates are inherently correlated, as estimates 
of density should scale with increases in occur-
rence while also depending on scale of estima-
tion (Gaston et al. 2000, Royle and Nichols 2003, 
Linden et al. 2017).   

Here, we examined the relationship between 
occurrence and density of ravens using spa-
tially explicit predictions from 2 previously 
published studies (O’Neil et al. 2018a, Coates et 
al. 2020a) within the Great Basin region of the 
United States. Specifically, we estimated the 
amount of discrepancy between the 2 predic-
tions as a continuous surface, which informed 
variation in the distribution and relative pro-
portion of resident and transient individuals 
occurring throughout the region of interest. 
For example, we used discrepancies between 
the 2 modeled responses (density vs. occur-
rence) to differentiate areas likely occupied by 
higher concentrations of resident as opposed 
to transient ravens. While broad-scale infor-
mation about raven density and occurrence 
has been developed previously, we expand on 
these products by developing a single predic-

Figure 1. The Great Basin study area in the 
western United States. 
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all unique observations of ravens (individual 
or group) during a 10‐minute point count. Ob-
servers recorded bearing, distance to the ob-
served raven or group of ravens, and number 
of ravens observed. Complete details regarding 
survey methodology can be found in Coates et 
al. (2020a) and Brussee et al. (2021). 

Spatial predictions from models of 
raven density and occurrence

Model and prediction of occurrence. We used ex-
isting spatial surfaces depicting predictions of 
raven occurrence (O’Neil et al. 2018a). Briefly, 
these surfaces provided estimates of the prob-
ability of raven occurrence within 2.57 km2 sur-
vey units, where multiple point count surveys 
were conducted each year, while accounting for 
detection using a hierarchical occupancy mod-
eling framework (MacKenzie 2006, Royle and 
Dorazio 2008).  Occurrence (ψ) was the proba-
bility that the survey unit was occupied during 
the study season, given repeated surveys with-
in and conditional on the estimated detection 
probability (P; probability observers recorded 1 
or more ravens during a survey given that they 
were present). Using a hierarchical Bayesian 
modeling framework within the JAGS coding 
environment (Plummer 2003), predictor vari-
ables for viewshed, forested area, and livestock 
presence were included as covariates on detec-
tion probability, while predictors representing 
climate, vegetation, topography, and anthropo-
genic features were included as covariates to 
predict occurrence (O’Neil et al. 2018a). 

From the parameter estimates of the most 
influential (i.e., selected) spatial predictors, 
O’Neil et al. (2018a) generated Bayesian pos-
terior predictions of raven occurrence at each 
cell. The midpoint (i.e., value at highest prob-
ability) of the predictive posterior distribution 
represented the spatially explicit map of “true” 
raven occurrence (i.e., corrected for imperfect 
detection) for each map cell projected from 
covariates across the Great Basin. We used the 
resulting raster layer of occurrence in our ex-
amination of occurrence and density of ravens 
throughout the Great Basin. See O’Neil et al. 
(2018a) for further details on methods for mod-
eling and mapping of raven occurrence.

Model and prediction of density. To represent 
density of ravens across the same area, we used 
previously developed spatial surfaces (Coates et 

al. 2020a). Briefly, Coates et al. (2020a) estimated 
annual raven densities across 43 study sites by 
implementing hierarchical distance sampling 
models from raven point count data (Royle et al. 
2004, Sillett et al. 2012) in R package “unmarked” 
(Fiske and Chandler 2011). Distances at which 
ravens were observed during point counts were 
binned into 5 classes with breakpoints at 225, 
450, 675, 900, and 1,125 m (e.g., Sillett et al. 2012, 
Kéry and Royle 2015). The relationship between 
raven distances and detection probability was 
estimated using a half-normal key function with 
covariates for area of viewshed and percent for-
ested land cover within 1.125 km of the observ-
er. Coates et al. (2020a) modeled density, con-
ditional on the half-normal distance detection 
function, using a negative binomial abundance 
distribution with field site and year effects on 
abundance (Royle et al. 2004, Sillett et al. 2012) 
to represent site- and year-specific estimates of 
raven density. 

The resulting estimates of raven density 
at each site-year combination were fit as a re-
sponse variable in a random forest regression 
analysis (Breiman 2001) to explore relation-
ships between these densities and environ-
mental predictors representing climate, vegeta-
tion, topography, and anthropogenic features. 
Coates et al. (2020a) then developed spatial pre-
dictions of raven density across the Great Basin 
based on the selected environmental covariates 
that were included in the highest performing 
random forest model (Breiman 2001, Cutler et 
al. 2007, Murphy et al. 2010), and the result-
ing spatial surface was exported at a 1.30 km2 
spatial resolution and archived for public use 
(Coates et al. 2020b). We used this raster surface 
of spatially explicit raven density estimates to 
examine trends in occurrence and density of 
ravens throughout the Great Basin. See Coates 
et al. (2020a) for further details on methods for 
mapping raven density.

Analysis and map development. Prior to exam-
ining the relationship between occurrence and 
density, we resampled the occurrence raster 
surface to align with the resolution of the exist-
ing density surface (1.30 km2) using the near-
est neighbor method in the “raster” package in 
Program R (Hijam 2020, R Development Core 
Team 2020). We examined the relationship be-
tween occurrence and density across the Great 
Basin using a generalized linear model (GLM) 
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given the occurrence estimate and indicate that 
either the area has specific resources to sup-
port low numbers of residents and not larger 
groups of transient ravens, or territorial resi-
dent ravens are present and keeping densities 
lower than expected by defending areas from 
transient ravens (Figure 2B). We extracted the 
model residuals and visually examined them 
for normality and homoscedasticity. Residuals 
were spatially registered and thus could be pro-
jected as a continuous raster surface across the 
study area with a spatial resolution (i.e., pixel 
size) of 1.30 km2. 

To delineate trends in density and occurrence 
estimates, we categorized the residual surface 
into 8 distinct categories based on the distribu-
tional quantiles of both occurrence and residu-
als. To accomplish this, we first split the occur-
rence surface into quantiles where each catego-
ry described the relative occurrence probability: 
“lowest ψ” = 0–25th percentiles, “low ψ” = 26–
50th percentiles, “high ψ” = 51–75th percentiles, 
and “highest ψ” = 76–100th percentiles. We then 
intersected the occurrence quartiles with the re-
sidual surface and classified the intersections as 
either above or below the expected value (value 
falls on regression trend line) where “low r” = 
negative residual values and “high r” = positive 
residual values. The resulting “low” quantile 
can be interpreted as lower than expected den-
sities for that occurrence quartile, while “high” 
quantile is interpreted as higher than expected 
densities for that occurrence quartile (Figure 2). 
The resulting thematic map had 8 categories 
that reflected relationships between occurrence 
and density estimates: category 1 = “lowest ψ/

that assumed a Poisson error distribution. We 
specified occurrence as the predictor variable 
and estimated density as the response variable, 
thus examining density as a function of occur-
rence. The sampling unit was each raster cell 
(1.30 km2) on both surfaces. Because estimates of 
occurrence and density are inherently correlat-
ed (Gaston et al. 2000, Royle and Nichols 2003) 
and our existing estimates were unsurprisingly 
spatially correlated, our model did not meet the 
assumption of independence of variables (Beale 
et al. 2010, Montgomery et al. 2012). When this 
assumption is not met, the chance for type I er-
ror increases and model parameter estimates 
can become biased (Beale et al. 2010). However, 
we did not attempt to make any predictions of 
density based on model outputs. Instead, we 
focused our subsequent analysis on descriptive 
trends of the residuals from this GLM to draw 
conclusions about the variation in density and 
occurrence throughout the Great Basin. Model 
residuals represent the difference between ob-
served and model-predicted estimates of the 
response variable (Montgomery et al. 2012) and 
thus provided information on the discrepancies 
between the model’s expectation of density in 
relation to raven occurrence. The farther a re-
sidual value is from zero, the greater the dif-
ference between the estimated density and the 
expected density predicted from the occurrence 
surface, where positive values denote that esti-
mated density was higher than expected based 
on the occurrence probability, indicating tran-
sient groups may be aggregating in these areas 
(Figure 2B). Conversely, negative values denote 
that estimated density was lower than expected 

Figure 2. Thematic map (A) and scatter plot (B) of trends in common raven (Corvus corax) occurrence 
and density throughout the Great Basin study region, USA, based on data collected from 2007 to 2016. 
The black line in the scatter plot (B) represents the trend line from the generalized linear regression of 
occurrence and density. 
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low r,” 2 = “lowest ψ/high r,” 3 = “low ψ/low r,” 
4 = “low ψ/high r,” 5 = “high ψ/low r,” 6 = “high 
ψ/high r,” 7 = “highest ψ/low r,” 8 = “highest 
ψ/high r.” We expected that disproportionately 
more resident ravens would be more likely in 
categories 5 and 7 while disproportionately 
more transient ravens would be more likely in 
categories 2 and 4. We expected that large num-
bers of both residents and transients would be 
found in categories 6 and 8, where both ψ and 
residuals were high (e.g., density and occur-
rence are both high). We created all mapping 
outputs using the ArcPy module for Python 3.6 
(Python Software Foundation, http://www.py-
thon.org) and ArcMap 10.7 (Esri Inc., Redlands, 
California, USA). 

After we evaluated the map for accuracy (see 
methods below), we present an example of how 
the map could be used to infer differences in 
predation risk for sage-grouse populations. We 
chose sage-grouse as an example because they 
are a sensitive prey species of high conservation 
concern in sagebrush ecosystems (Connelly et 
al. 2004). To do this, we intersected sage-grouse 
concentration areas with our map and quanti-
fied the area and percent area of each map cat-
egory within the sage-grouse concentration ar-
eas. The sage-grouse concentration areas were 
based on predictive modeling of space use and 
abundance of breeding sage-grouse as well as 
models of sage-grouse resource selection dur-
ing the same time period (approximately 2007–
2016) our raven population data were collected 
(Coates et al. 2016b, Doherty et al. 2016). This 
analysis, although descriptive in nature, dem-
onstrated how our map could be used to iden-
tify areas associated with potentially increased 
predation risk of sage-grouse by ravens.

Map evaluation
We used 2 different evaluation approaches 

to evaluate the ability of our mapped catego-
ries to describe variation in raven group sizes 
and individual raven spatial movements using 
independent datasets. For the first approach, 
we used point count survey data collected 
from 2017 to 2019 (independently of the point 
count survey data used to estimate occurrence 
or density) to assess the frequency of different 
raven group sizes in each category of the oc-
currence/residual surface. For each point count 
survey, observed group size was binned into 1 

of 3 categories: null groups (0 ravens observed), 
small groups (1–2 ravens observed), and large 
groups (3+ ravens observed). By differentiat-
ing between small and large group sizes, we 
were able to establish a general threshold of 
group sizes that likely comprised transient ra-
vens (i.e., large group of 3+ ravens; Loretto et 
al. 2017) as opposed to small group sizes that 
more likely comprised either resident or tran-
sient birds (Bui et al. 2010). We then overlayed 
the point locations of surveys with the occur-
rence/residual surface to assign each group size 
to a category of occurrence/residual trends and 
calculated the proportions of different group 
sizes within each map category. 

We compared these proportions across vari-
ous map categories of interest using a 2-tailed, 
2 proportions z-test with continuity correction 
(Newcombe 1998). Specifically, we compared 
the combined proportions of null groups from 
categories 1 and 2 to the proportion of null 
groups in all other categories. This comparison 
allowed us to determine if the map categories 
with the lowest predicted occurrence had sig-
nificantly fewer raven observations than map 
categories with higher predicted occurrence, 
thus accurately delineating trends in raven 
occurrence. We also compared the combined 
proportions of large groups from categories 6 
and 8 against the combined proportions across 
all other categories to determine whether our 
map categories were accurately delineating 
areas where raven occurrence and estimated 
density were relatively high. Additionally, we 
compared proportions of large group sizes in 
category 4 (low occurrence/high residuals) to 
combined proportions of large group sizes in 
categories 1 and 3 to determine if our map cate-
gorization accurately captured areas where we 
expected to observe transient birds that may ex-
hibit aggregation behaviors (Loretto et al. 2017). 
We used an alpha of 0.05 to determine statisti-
cal significance of comparisons.

Our second validation approach assessed 
whether resident and transient ravens moni-
tored with GPS transmitters used areas on our 
categorical map in ways that were consistent 
with the occurrence-density relationship. For 
this approach, we used movements of ravens 
monitored within the Great Basin as part of a 
larger raven ecology study during 2019 and 
2020. Ravens were captured by hand or using 
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hand nets and were fitted with GeoTrak GT-
22GS-GPS transmitters (GeoTrak, Inc., Apex, 
North Carolina, USA) before being released at 
their capture location. All animal capture and 
handling practices were approved under Ne-
vada Department of Wildlife permit 06715 or 
U.S. Geological Survey permit 21142. Trans-
mitters were programmed to collect 8 locations 
(±100 m) per day to document raven move-
ments. We only examined movement data 
from March to May to match the time period 
that point count survey data were collected to 
estimate occurrence and density as well as the 
time period that overlaps with raven nesting 
season (mid-March through July; Kristan and 
Boarman 2003). If individuals were monitored 
across multiple years, each year was considered 
independently because individual ravens can 
shift between residency and transiency across 
years, or in the case of nesting, residents can 
use different nest locations in subsequent years 
(Roth et al. 2004). 

To determine whether a monitored raven was 
exhibiting resident or transient behavior, we ex-
amined each individual’s site fidelity (i.e., stay-
ing in the same area over time) and home range 
patterns by generating 95% minimum convex 
polygons (MCP). We then calculated the area of 
each MCP and quantified the distance of each 
relocation from the centroid of the MCP to as-
sess site fidelity and approximate size of home 
range of each individual during the monitoring 
period. We used the R package “adehabitatHR” 
for all MCP analyses (Calenge 2006). Previous 
research has found that resident individuals 
exhibit high site fidelity and use smaller areas 
than transient, nonbreeding individuals (Roth 
et al. 2004, Harju et al. 2018). However, individ-
uals have been observed moving relatively long 
distances from their roost or nest (Engel and 
Young 1992), and our monitoring period likely 
included several days of movement locations 
prior to residents entering the nesting season 
(mid-March), so we used a conservative thresh-
old of site fidelity combined with detailed vi-
sual assessment and confirmation to minimize 
misclassification of residents as transients and 
vice versa. Thus, we designated individuals 
that did not move >65 km from the center of 
their MCP and had an MCP area of <450 km2 
as residents, while individuals with longer dis-
tance movements and extremely large (>7,000 

km2) MCPs were designated as transient. Nota-
bly, MCP estimation methodologies are known 
to overestimate space use of individuals (Borg-
er et al. 2006). Our goal, however, was not to de-
fine home ranges for each individual, but rather 
to efficiently differentiate between residential 
and transient movement patterns by relating 
general site fidelity and space use to a conserva-
tive biological threshold. Using MCP methods 
to estimate space use allowed us to confidently 
differentiate between resident and transient 
birds because transient birds that moved large 
distances would generate large MCP estimates 
(>7,000 km2) relative to resident birds (<450 
km2) exhibiting high site fidelity.

We used a use/availability approach (Beyer 
et al. 2010) to determine whether resident and 
transient birds’ use patterns were consistent 
with mapped categories across the Great Ba-
sin. We generated randomly distributed point 
locations across the Great Basin, representing 
“available” map categories, at a 5:1 ratio to 
“used” GPS relocations. We then used GLMM 
with a binomial distribution and a logit link 
function to evaluate if residents and transients 
used certain map categories more frequently 
than expected given availability of those cat-
egories. Because we expected movement pat-
terns to differ between resident and transient 
individuals and across years, we modeled each 
group separately for each year. We modeled the 
binary response of use (GPS location) and avail-
able (random location) as a function of different 
categories from the occurrence/residual surface 
predictions described above. This specification 
allowed us to estimate the influence of each oc-
currence/residual category on disproportionate 
use to availability. All models included individ-
ual as a random effect to account for differences 
in sample size among individual birds (Gillies 
et al. 2006). If models revealed that resident 
or transient individuals used a map category 
significantly more or less (α = 0.05) than it was 
available, we interpreted that as selection for or 
against that category. All models used category 
1 as an intercept, so that estimated selection 
trends were interpreted as relative to predicted 
selection for category 1, the category with low-
est occurrence and lowest residuals (i.e., areas 
of low use). We interpreted trends in raven se-
lection for or against map categories from GPS 
data as evidence of whether our map accurately 
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predicted locations and space use of individual 
resident and transient ravens throughout the 
study area.

We then used a pairwise contrast analysis to 
test differences in relative selection of differ-
ent map categories. We ran all pairwise com-
parisons between each map category but were 
specifically interested in comparisons across 
residual levels within each occurrence catego-
ry (i.e., compare category 1 vs. 2, 3 vs. 4, etc.) 
to determine if our occurrence/residual map 
consistently differentiated between categories 
we might expect resident or transient birds to 
exhibit greater selection for (i.e., categories 1, 
3, 5, 7 or 2, 4, 6, 8, respectively). We empha-
sized specific contrasts to evaluate support 
for hypotheses about resident versus transient 
use of the categorical map. For example, we 
expected greater resident selection for catego-
ries 5 and 7 relative to categories 1 and 2 to 
determine whether residents were dispropor-
tionately using areas with relatively high oc-
currence but low residuals. For transients, we 
expected greater selection for categories 2 and 
4 (relatively low occurrence but high residu-
als) relative to categories 5 and 7 to determine 
if transients were selecting for areas with low 
occupancy/high residual relative to areas of 
high occupancy. This approach allowed us to 
assess how selection for all categories of our 
occurrence/residual map differed between 
resident and transient birds and whether se-
lection patterns aligned with our predictions 
based on map categorization.

Results
We conducted 31,609 raven point count sur-

veys from 2007 to 2019. Of those surveys, 16,974 
were conducted between 2007 and 2016 and 
were used to model raven occurrence and den-
sity. We conducted 14,815 point count surveys 
from 2017 to 2019 that were used to evaluate 
how well our occurrence/residual map surface 
predicted where small (assumed resident) and 
large groups (assumed transient) of ravens 
would occur across the study area. Each of the 
8 categories in the occurrence/residual map 
comprised approximately 12.5% (± 0.2%) of the 
Great Basin area (Figure 2). Upon overlaying 
the sage-grouse concentration areas with our 
map, we found that 46.8% of sage-grouse con-
centration areas fell in categories with high con-

Figure 3. Greater sage-grouse (Centrocercus 
urophasianus) concentration areas overlayed on 
the thematic map of common raven (Corvus corax) 
occurrence and density across the Great Basin, 
USA, estimated from data collected between 2007 
and 2016. Categories represented correspond to 
quantiles of occurrence and estimated residuals from 
a density model where category 1 = “lowest ψ/low r,” 
category 2 = “lowest ψ/high r,” category 3 = “low ψ/
low r,” category 4 = “low ψ/high r,” category 5 = “high 
ψ/low r,” category 6 = “high ψ/high r,” category 7 = 
“highest ψ/low r,” category 8 = “highest ψ/high r.”

Table 1. Quantified area of sage-grouse (Cen-
trocercus spp.) concentration areas that fell in 
each category of a common raven (Corvus corax) 
occurrence and density map. Categories shown 
correspond to quantiles of occurrence and esti-
mated residuals from a density model where cat-
egory 1 = “lowest ψ/low r,” category 2 = “lowest 
ψ/high r,” category 3 = “low ψ/low r,” category 
4 = “low ψ/high r,” category 5 = “high ψ/low r,” 
category 6 = “high ψ/high r,” category 7 = “high-
est ψ/low r,” category 8 = “highest ψ/high r.”
Map category Area (km2) Percent area (%)

1   8,339.10 14.66
2   4,847.28   8.62
3   9,970.44 17.52
4   7,097.64 12.47
5 11,412.54 20.06
6   7,379.22 12.97
7   5,655.54   9.94
8   2,197.92   3.86
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Table 2. Counts and proportions of null (0), small (1–2), and large (3+) common raven (Corvus corax) 
group sizes observed in each thematic category of occurrence and residuals from a density model. 
Group sizes were obtained via 14,815 point count surveys conducted from 2017 to 2019 across the 
Great Basin, USA. Categories correspond to quantiles of occurrence and estimated residuals from 
a density model where category 1 = “lowest ψ/low r,” category 2 = “lowest ψ/high r,” category 3 = 
“low ψ/low r,” category 4 = “low ψ/high r,” category 5 = “high ψ/low r,” category 6 = “high ψ/high 
r,” category 7 = “highest ψ/low r,” category 8 = “highest ψ/high r.”
Category Null group 

counts
Small group 

counts
Large group 

counts
Null group 
proportion

Small group 
proportion

Large group 
proportion

1 1,660 517 72 0.738 0.23 0.032

2    597 279 35 0.655   0.306 0.038

3    899 428 73 0.642   0.306 0.052

4    661 513 63 0.534   0.415 0.051

5    934 601 92 0.574   0.369 0.057

6    278 357 51 0.405 0.52 0.074

7    177 160 16 0.501   0.453 0.045

8      18   51   7 0.237   0.671 0.092

Figure 4. Ninety-five percent Minimum Convex Polygons (km2; MCP) of 
space use for resident (A) and transient (B) common ravens (Corvus corax) 
monitored in the Great Basin, USA, during 2019 and 2020. Birds monitored in 
2019 are shown in gray, while birds monitored in 2020 are shown in red. 
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centrations of resident ravens (categories 5, 6, 
7, 8; Figure 3; Table 1). Of these areas, ~17% fell 
in categories 6 and 8, where we expected high 
concentrations of both residents and transients, 
while ~30% fell in categories 5 and 7, where we 
expect high concentrations of only residents. 
Spatially explicit data output maps are avail-
able online (Coates et al. 2021). 

When evaluating group sizes (2017–2019), 
sampling effort varied across categories (Table 
2). The most frequently observed group size 
across categories 1–7 was the null group size (0 
ravens observed), while the small group size 
was the most frequently observed group size 
in category 8. Categories 1 and 2 had a higher 
proportion of null group sizes relative to all 
other categories, indicating that the map prod-
uct was accurately describing areas with low-
est occurrence. Conversely, categories 6 and 8 
had a significantly higher proportion of large 
group sizes relative to other categories. We 
found no significant difference between the 
proportion of large group sizes in category 4 

relative to categories 1 and 3.
We used GPS location datasets of 22 ravens, 10 

of which were monitored for both years, result-
ing in 32 unique movement datasets for subse-
quent analysis. We classified 15 of the datasets as 
resident birds (n = 6 for 2019 and n = 9 for 2020) 
and 17 as transient (n = 7 for 2019 and n = 10 for 
2020; Figure 4). Based on our classification, 5,155 
resident locations and 6,244 transient locations 
were used in modeling analyses. Modeling re-
vealed that resident ravens showed significantly 
stronger selection for all map categories except 
category 8 relative to categories 1 and 3 in 2019 
(Table 3). Transients in 2019 selected for catego-
ries 2, 4, 6, 7, and 8 significantly more than cat-
egory 1 and exhibited avoidance of categories 3 
and 5 (Table 3). Resident and transient ravens 
in 2020 showed selection for all categories rela-
tive to category 1. These findings mostly aligned 
with our expectations of residents selecting cat-
egories 5–8 (i.e., areas with high probability of 
occurrence regardless of density), while catego-
ries 2, 4, 6, and 8 (i.e., areas with high density 

Table 3. Beta coefficient (β) estimates, standard error (SE), Z-values, and P-values (P) for general-
ized linear mixed models assessing resident and transient common raven (Corvus corax) use of each 
occurrence/residual map category in 2019 and 2020. 

2019 2020
Status Model 

covariate
β 
estimate

SE Z-value P-value β 
estimate

SE Z-value P-value

Resident

Category 1 
(intercept)

-6.12 0.56 -10.84 <0.001 -4.16 0.19 -21.66 <0.001

Category 2  2.86 0.58    4.91 <0.001 1.31 0.21    6.11 <0.001
Category 3  0.88 0.68    1.30   0.19 1.38 0.21    6.54 <0.001
Category 4  5.28 0.57    9.33 <0.001 3.73 0.19  19.37 <0.001
Category 5  1.78 0.61    2.92   0.004 0.96 0.22    4.31 <0.001
Category 6  4.72 0.57    8.31 <0.001 3.45 0.19  17.84 <0.001
Category 7  4.78 0.57    8.42 <0.001 2.19 0.20  10.93 <0.001
Category 8  5.63 0.57    9.95 <0.001 2.41 0.20  12.16 <0.001

Transient

Category 1 
(intercept)

-2.07 0.07 -28.38 <0.001 -2.62 0.08 -32.40 <0.001

Category 2  0.63 0.09    6.80 <0.001 1.03 0.10  10.85 <0.001

Category 3 -1.04 0.14 -7.51 <0.001 0.44 0.10    4.22 <0.001
Category 4  0.66 0.09    7.19 <0.001 2.03 0.09  23.07 <0.001
Category 5 -1.49 0.16 -9.116 <0.001 0.54 0.10    5.25 <0.001
Category 6  1.04 0.09  11.96 <0.001 1.65 0.09  18.37 <0.001
Category 7  0.69 0.09    7.61 <0.001 -0.002 0.12 -0.02   0.99
Category 8  0.92 0.09  10.35 <0.001 0.08 0.11   0.70   0.48
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regardless of probability of occurrence) were se-
lected by transients. Contrast analyses revealed 
that residents generally selected for categories 
5 and 7 relative to categories 1 and 2, with the 
exception of the contrast between categories 5 
and 2 (Figure 5). Residents generally showed 
significant selection for categories with high re-
siduals relative to low residual categories within 
the same occurrence class, which was somewhat 
unexpected. For transients, we generally found 
significantly higher selection for categories 2 
and 4 relative to categories 5 and 7 (Figure 5). 
Transients also showed significant selection for 
categories with high residuals relative to low 
residual categories within the same occurrence 
class. 

Discussion
Our occurrence/residual map provides a 

novel, robust tool that can help to guide man-
agement of expanding raven populations in the 
Great Basin. We used landscape-level patterns 
of density and occurrence of ravens to obtain 
meaningful information about raven popula-
tion structure by evaluating deviations from 
the expectations of a model predicting raven 
probability of occurrence (O’Neil et al. 2018b) 
and a model predicting raven density (Coates 
et al. 2020b). We used landscape-level patterns 
of density and occurrence of ravens to obtain 
meaningful information about raven popula-
tion structure by evaluating deviations from the 
expectations of a model evaluating density as 

Figure 5. Pairwise contrast estimates of selection coefficients for global positioning system-tracked 
resident and transient common ravens (Corvus corax) monitored in the Great Basin, USA, during 2019 
and 2020. Estimates are shown at the top of each tile, while standard error (SE) is represented by size of 
each circle, and significant contrasts (P < 0.05) are denoted with stars in the bottom of each tile. Nega-
tive estimates (red) indicate greater selection for the category on the y-axis (relative to the x-axis), while 
positive estimates (blue) indicate greater selection for the category on the x-axis (relative to the y-axis). 
Categories represented correspond to quantiles of occurrence and estimated residuals of a linear regres-
sion model relating predicted raven occurrence to density, where category 1 = “lowest ψ/low r,” category 
2 = “lowest ψ/high r,” category 3 = “low ψ/low r,” category 4 = “low ψ/high r,” category 5 = “high ψ/low r,” 
category 6 = “high ψ/high r,” category 7 = “highest ψ/low r,” category 8 = “highest ψ/high r.”
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a function of occurrence. Specifically, we used 
the residuals from this model to generate hy-
potheses about the prevalence of breeding and 
transient ravens across the Great Basin. The re-
sulting maps predicted spatial variation among 
independent datasets (raven group sizes from 
point counts and locations of GPS marked indi-
viduals) to a moderate extent, suggesting that 
the spatial pattern in the relationship between 
density and occurrence can inform characteris-
tics of raven populations at a broad scale across 
the Great Basin. In some cases, the resulting 
patterns can indicate relative risk to sensitive 
species such as sage-grouse (Bui et al. 2010), 
which may be used to inform management ac-
tions. 

Several previous studies have demonstrated 
remarkable differences in sociality, movement 
patterns, and foraging behavior of ravens de-
pending on breeding status (Webb et al. 2012, 
Coates et al. 2014, Harju et al. 2018), and the 
prevalence and composition of anthropogenic 
food sources (Restani et al. 2001, Marzluff and 
Neatherlin 2006). Yet, our study may be the first 
to identify spatially explicit variation in poten-
tial population structure across an extensive 
region. Though our findings should be subject 
to continued investigation and evaluation, the 
conservation and management of at-risk spe-
cies may currently benefit from categorical spa-
tial information that speaks to potential conflict 
risks associated with raven population struc-
ture. Specifically, identifying regions where ra-
ven populations have high saturation (i.e., high 
occurrence and high estimated density; catego-
ries 6 and 8) and areas where large proportions 
of breeding residents are likely (despite rela-
tively lower densities; categories 5 and 7) may 
represent areas of increased predation pressure 
on other wildlife species (Bui et al. 2010, Brus-
see and Coates 2018). By accurately identifying 
these areas, our map may allow managers and 
researchers to mitigate impacts of ravens on 
native species of conservation concern, such as 
sage-grouse, more effectively.

While our map evaluation analyses indicated 
that the occurrence/residual map accurately de-
lineated spatial variation in raven population 
structure across the Great Basin, neither evalu-
ation approach found total agreement between 
evaluation data and map categorization. For 
example, we did not find significant differences 

in the proportion of large group sizes between 
categories 3 and 4, although we expected larger 
proportions in category 4. Additionally, our 
contrast analysis found that residents gener-
ally selected for categories with high residuals 
(2, 4, 6, 8) over low residuals (1, 3, 5, 7) within 
the same occurrence category, an unexpected 
result because we expected residents to select 
for areas where density was lower than expect-
ed given the occurrence. Considering this was 
the first attempt to empirically describe spatial 
characteristics of a complex behavioral phe-
nomenon (i.e., the influence of breeding status 
on territoriality and movement behavior) at a 
relatively coarse scale, some aberrations from 
expected trends were not surprising. For ex-
ample, although we delineate areas predicted 
to have larger proportions of breeding resident 
ravens, breeding and territoriality in ravens 
is a complex ecological process that is in turn 
dependent on several individual, population, 
and ecosystem level characteristics such as nest 
success, population density, or food resource 
availability (Restani et al. 2001, Kristan et al. 
2004, Webb et al. 2012). Further, ravens’ be-
havioral plasticity allows them to readily alter 
their movement patterns to changing environ-
mental conditions (Bui et al. 2010, Loretto et al. 
2017), a trait that almost certainly introduces 
further variation in our predictions of popula-
tion structure and our ability to evaluate our 
map with individual movement data. Despite 
these potential limitations, the generalized oc-
currence/residual map successfully predicted 
variation in group sizes as well as the expected 
use of different map categories by resident in-
dividual ravens relative to transients, suggest-
ing its validity for evaluating raven population 
structure in the Great Basin.

Our spatially explicit categorical map of pop-
ulation structure provides a useful manage-
ment and conservation tool that can be applied 
at broad spatial scales. However, it is important 
to note that our approach for assessing patterns 
in density and occurrence did not allow us to 
incorporate the estimated uncertainty around 
occurrence and density parameter estimates 
into our map product. This omission can lead 
to misinterpretation of trends when the central 
tendency (in this case, the estimated mean) of 
an estimated parameter may not be representa-
tive of the data due to large or heterogeneous 
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variance within the data (Cade and Noon 2003). 
However, given the robustness of the data and 
analyses used to generate the original occur-
rence and density maps and the extensive vali-
dation analyses we conducted on our map prod-
uct, we feel confident that our map can be used 
as a broad management tool in the absence of a 
more comprehensive study. Indeed, this study 
was not intended to replace more rigorous, fine 
scale analyses of raven movement behavior 
patterns and their influence on predation pres-
sure to native species at local scales. Instead, we 
have provided a novel tool that provides broad 
information on raven population structure that 
may be of use to biologists or managers. 

Management implications
Understanding how patterns of raven oc-

currence and density relate to breeding status, 
movement behavior, and ultimately foraging 
success is of critical interest to resource manag-
ers tasked with mitigating the impacts of pre-
dation from subsidized raven populations on 
species of conservation concern. Maximizing 
the efficacy and potential impact of manage-
ment actions toward accomplishing conserva-
tion goals is also a priority for resource manag-
ers, who are often limited in scope by logistical, 
practical, and economic considerations sepa-
rate from ecological factors. Our map allows 
for broad inference about spatial variation in 
predation risk from ravens, which can be used 
to focus management efforts to regions of high 
predation risk that overlap with other species 
ranges. Indeed, we found that nearly half of 
sage-grouse concentration areas fell in catego-
ries where raven population structure (i.e., ar-
eas with high concentrations of resident ravens) 
could be associated with increased predation 
risk, which could have significant impact on 
this sensitive species’ population growth over 
time. Our map can also be incorporated in spa-
tially explicit decision support tools (Detten-
maier et al. 2021) to help improve the efficacy 
of raven management efforts and, ultimately, 
survival and reproduction of sensitive wildlife 
species within the Great Basin.
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