13 research outputs found

    The boll weevil in Missouri : history, biology and management

    Get PDF
    "Original author: Clyde E. Sorenson""The cotton boll weevil, Anthonomus grandis grandis, was the most important pest of cotton in much of America's Cotton Belt. Fortunately, it was eradicated in the United States by a U.S. Department of Agriculture (USDA) program in cooperation with state agencies and cotton farmers. In Missouri, the eradication started in 2001 and lasted seven years. The weevil's importance was due not only to the considerable damage it does but also to its disruption of management programs that target other pests. High numbers of boll weevils caused repeated insecticide applications during the growing season because the boll weevil went through several overlapping generations during every crop season, reproduced quickly, moved often and could be controlled with insecticides only during its adult stage. Applying insecticides reduced populations of organisms that regulate the populations of other cotton pests, such as aphids, plant bugs and the bollworm complex. The presence of significant boll weevil populations dictated, to some extent, the management of other pests."--First page.Written by; Clyde E. Sorenson (formerly of the MU Delta Center), Gene Stevens (Extension Professor, Agronomy)New 4/95; Revised 9/1

    Effects of Vegetated Field Borders on Arthropods in Cotton Fields in Eastern North Carolina

    Get PDF
    The influence, if any, of 5m wide, feral, herbaceous field borders on pest and beneficial arthropods in commercial cotton, Gossypium hirsutum (L.) (Malvales: Malvaceae), fields was measured through a variety of sampling techniques over three years. In each year, 5 fields with managed, feral vegetation borders and five fields without such borders were examined. Sampling was stratified from the field border or edge in each field in an attempt to elucidate any edge effects that might have occurred. Early season thrips populations appeared to be unaffected by the presence of a border. Pitfall sampling disclosed no differences in ground-dwelling predaceous arthropods but did detect increased populations of crickets around fields with borders. Cotton aphid (Aphis gossypii Glover) (Hemiptera: Aphididae) populations were too low during the study to adequately assess border effects. Heliothines, Heliothis virescens (F.) and Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), egg numbers and damage rates were largely unaffected by the presence or absence of a border, although in one instance egg numbers were significantly lower in fields with borders. Overall, foliage-dwelling predaceous arthropods were somewhat more abundant in fields with borders than in fields without borders. Tarnished plant bugs, Lygus lineolaris (Palisot de Beauvois) (Heteroptera: Miridae) were significantly more abundant in fields with borders, but stink bugs, Acrosternum hilare (Say), and Euschistus servus (Say) (Hemiptera: Pentatomidae) numbers appeared to be largely unaffected by border treatment. Few taxa clearly exhibited distributional edge effects relative to the presence or absence of border vegetation. Field borders like those examined in this study likely will have little impact on insect pest management in cotton under current insect management regimens

    Systemic Imidacloprid Affects Intraguild Parasitoids Differently.

    No full text
    Toxoneuron nigriceps (Viereck) (Hymenoptera, Braconidae) and Campoletis sonorensis (Cameron) (Hymenoptera, Ichneumonidae) are solitary endoparasitoids of the tobacco budworm, Heliothis virescens (Fabricius) (Lepidoptera, Noctuidae). They provide biological control of H. virescens populations in Southeastern US agricultural production systems. Field and greenhouse experiments conducted from 2011-2014 compared parasitism rates of parasitoids that developed inside H. virescens larvae fed on tobacco plants treated with and without imidacloprid. The parasitoids in our study did not have a similar response. Toxoneuron nigriceps had reduced parasitism rates, but parasitism rates of C. sonorensis were unaffected. Preliminary data indicate that adult female lifespans of T. nigriceps are also reduced. ELISA was used to measure concentrations of neonicotinoids, imidacloprid and imidacloprid metabolites in H. virescens larvae that fed on imidacloprid-treated plants and in the parasitoids that fed on these larvae. Concentrations were detectable in the whole bodies of parasitized H. virescens larvae, T. nigriceps larvae and T. nigriceps adults, but not in C. sonorensis larvae and adults. These findings suggest that there are effects of imidacloprid on multiple trophic levels, and that insecticide use may differentially affect natural enemies with similar feeding niches

    Ground-Dwelling Invertebrate Abundance Positively Related to Volume of Logging Residues in the Southern Appalachians, USA

    No full text
    Invertebrates, especially those dependent on woody debris for a portion of their life cycle, may be greatly impacted by the amount of downed wood retained following timber harvests. To document relationships between invertebrates and logging residues, we sampled invertebrates with pitfall traps placed near or far from woody debris in 10 recently (2013–2015) harvested sites in western North Carolina with varying levels of woody debris retention. We measured the groundcover and microclimate at each trap and estimated site-level woody debris volume. We modeled predictors (e.g., site-level woody debris volume, percent woody debris cover at the trap site, site type) of captures of spiders (Araneae), harvestmen (Opiliones), centipedes/millipedes (Chilopoda/Diplopoda), ground beetles (Carabidae), rove beetles (Staphylinidae), other beetles, ants (Formicidae), grasshoppers (Acrididae/Tetrigidae), crickets (Gryllidae), and cave crickets (Rhaphidophoridae). In addition, we modeled ant occurrence at a finer taxonomic resolution, including red imported fire ants (Solenopsis invicta Buren) and 13 other genera/species. Forest type, whether hardwood or white pine (Pinus strobus L.) overstory preharvest, was a predictor of invertebrate response for 21 of 24 taxonomic analyses. Invertebrate captures or the occurrence probability of ants increased with increasing site-level woody debris volume for 13 of the 24 taxa examined and increased with increasing coarse woody debris (CWD; diameter ≥ 10 cm) cover at the trap level for seven of 24 taxa examined. Our results indicate that woody debris in harvested sites is important for the conservation of a majority of the taxa we studied, which is likely because of the unique microclimate offered near/under woody debris. Stand-scale factors typically were more important predictors of invertebrate response than trap-level cover of woody debris. We recommend implementing sustainability strategies (e.g., Biomass Harvesting Guidelines) to retain woody debris scattered across harvested sites to aid in the conservation of invertebrates

    Data from: Venus flytrap rarely traps its pollinators

    No full text
    Includes: (1) Data used to assess difference in probability of pollen-carrying across orders (Fig. 1a). (2) Subsample counts of number of pollen grains in 5 fields of view on fuchsin-jelly slides, for up to 10 specimens each of the 10 most common flower-visitor taxa. (3) Data used to assess niche overlap and generate network diagram (Fig. 2

    Data from: Venus flytrap rarely traps its pollinators

    No full text
    Because carnivorous plants rely on arthropods as pollinators and prey, they risk consuming would-be mutualists. We examined this potential conflict in the Venus flytrap (Dionaea muscipula), whose pollinators were previously unknown. Diverse arthropods from two classes and nine orders visited flowers; 56% of visitors carried D. muscipula pollen, often mixed with pollen of co-flowering species. Within this diverse, generalized community, certain bee and beetle species appear to be the most important pollinators, based on their abundance, pollen load size, and pollen fidelity. D. muscipula prey spanned four invertebrate classes and eleven orders; spiders, beetles, and ants were most common. At the family and species levels, few taxa were shared between traps and flowers, yielding a near-zero value of niche overlap for these potentially competing structures. Spatial separation of traps and flowers may contribute to partitioning the invertebrate community between nutritional and reproductive functions in D. muscipula

    Adult female parasitoids.

    No full text
    <p>Adult females of <i>C</i>. <i>sonorensis</i> (right) and <i>T</i>. <i>nigriceps</i> (left).</p
    corecore