102 research outputs found

    Identification of anisotropic tensile strength of cortical bone using Brazilian test.

    Get PDF
    For a proper analysis of cortical bone behaviour, it is essential to take into account both the elastic stiffness and the failure criteria. While ultrasound methods allow complete identification of the elastic orthotropic coefficients, tests used to characterise the various failure mechanisms and to identify the brittle tensile strength in all directions are currently inadequate. In the present work we propose the Brazilian test as a complement to conventional tensile tests. In fact, this experimental technique, rarely employed in the biomechanics field, has the potential to provide an accurate description of the anisotropic strength of cortical bone. Additionally, it allows us to assess the scale influence on failure behaviour which may be attributed to an intrinsic length in correlation with the cortical bone microstructure. In order to correctly set up the Brazilian test, several aspects such as the machining, the geometrical parameters of the specimen and the loading conditions were determined. The finite element method was used to evaluate the maximal tensile stress at the centre of a 2D anisotropic elastic specimen as a simple function of the loading. To validate the protocol, the Brazilian test was carried out on 29 cortical bovine cylindrical specimens with diameters ranging from 10mm to 4mm

    Heterogeneous directions of orthotropy in three-dimensional structures: finite element description based on diffusion equations

    Get PDF
    Heterogeneous materials such as bone or woven composites show mesostructures whose constitutive elements are all oriented locally in the same direction and channel the stress flow throughout the mechanical structure. The interfaces between such constitutive elements and the matrix are regions of potential degradations. Then, when building a numerical model, one has to take into account the local systems of orthotropic coordinates in order to properly describe the damage behavior of such materials. This can be a difficult task if the orthotropic directions constantly change across the complex three-dimensional geometry as is the case for bone structures or woven composites. In the present paper, we propose a finite element technique to estimate the continuum field of orthotropic directions based on the main hypothesis that they are mainly triggered by the external surface of the structure itself and the boundary conditions. We employ two diffusion equations, with specific boundary conditions, to build the radial and the initial longitudinal unit vectors. Then, to ensure the orthonormality of the basis, we compute the longitudinal, the circumferential, and the radial vectors via a series of vector products. To validate the numerical results, a comparison with the average directions of the experimentally observed Haversian canals is used. Our method is applied here to a human femur

    Modelling of anisotropic cortical bone based on degradation mechanism

    Get PDF
    When an orthopaedic prosthesis is implanted, it is essential to ensure bone remodelling and to maintain the proper mechanical properties under specific loading conditions. The coupling between the remodelling and the loading is ensured by the mechanical stress inducing the osteo- genesis around the implant (Frost 2003). The objective of the present work is to develop a finite element tool and a multiscale mechanical model of the behaviour of the cortical bone in order to be able to optimize the stiffness of the prosthetic implant and to avoid overloaded or under- loaded regions

    A general method for the determination of the local orthotropic directions of heterogeneous materials: application to bone structures using µCT images

    Get PDF
    To assess the degree (i.e., isotropy, transverse isotropy, or orthotropy) and the directions of anisotropy of a three-dimensional structure, information about its mesostructure is necessary. Usually, a topological analysis of computed tomography or microcomputed tomography images is performed and requires an interpretation of the constitutive elements of the three-dimensional structure, which may lead to a simplistic description of the geometry. In this paper we propose an alternative technique based on a geometric tensor and we use it to analyze 38 representative elementary volumes extracted from 24 specimens of cortical bone in a human femur whose geometries have been reconstructed via microcomputed tomography images

    Near-field spectroscopy of low-loss waveguide integrated microcavities

    Get PDF
    International audienceA scanning near-field spectroscopy method is used to observe loss reduction and Q-factor enhancement due to transverse-mode profile matching within photonic-crystal microcavities. Near-field measurements performed directly on cavity modes are compared with three-dimensional calculations and quantitative agreement is observed. (c) 2006 American Institute of Physics

    The Tyrosine-Autokinase UbK Is Required for Proper Cell Growth and Cell Morphology of Streptococcus pneumoniae

    Get PDF
    International audienceProtein phosphorylation is a key post-translational modification required for many cellular functions of the bacterial cell. Recently, we identified a new protein-kinase, named UbK, in Bacillus subtilis that belongs to a new family of protein-kinases widespread in bacteria. In this study, we analyze the function of UbK in Streptococcus pneumoniae. We show that UbK displays a tyrosine-kinase activity and autophosphorylates on a unique tyrosine in vivo. To get insights into its cellular role, we constructed a set of pneumococcal ubk mutants. Using conventional and electron microscopy, we show that the ubk deficient strain, as well as an ubk catalytic dead mutant, display both severe cell-growth and cell-morphology defects. The same defects are observed with a mutant mimicking permanent phosphorylation of UbK whereas they are not detected for a mutant mimicking defective autophosphorylation of UbK. Moreover, we find that UbK phosphorylation promotes its ability to hydrolyze ATP. These observations show that the hydrolysis of ATP by UbK serves not only for its autophosphorylation but also for a distinct purpose essential for the optimal cell growth and cell-morphogenesis of the pneumococcus. We thus propose a model in which the autophosphorylation/dephosphorylation of UbK regulates its cellular function through a negative feedback loop

    Thermo-oxidation behaviour of organic matrix composite materials at high temperatures

    Get PDF
    The present paper is a review of the main activities carried out within the context of the COMPTINN‟ program, a joint research project founded by a FUI program (Fonds Unifiés Interministériels) in which four research teams focused on the thermo-oxidation behaviour of HTS-TACTIX carbon-epoxy composite at „high‟ temperatures (120°C-180°C). The scientific aim of the COMPTINN‟ program was to better identify, with a multi-scale approach, the link between the physico-chemical mechanisms involved in thermo-oxidation phenomena, and to provide theoretical and numerical tools for predicting the mechanical behaviour of aged composite materials including damage onset and development

    Chromatin Fiber Dynamics under Tension and Torsion

    Get PDF
    Genetic and epigenetic information in eukaryotic cells is carried on chromosomes, basically consisting of large compact supercoiled chromatin fibers. Micromanipulations have recently led to great advances in the knowledge of the complex mechanisms underlying the regulation of DNA transaction events by nucleosome and chromatin structural changes. Indeed, magnetic and optical tweezers have allowed opportunities to handle single nucleosomal particles or nucleosomal arrays and measure their response to forces and torques, mimicking the molecular constraints imposed in vivo by various molecular motors acting on the DNA. These challenging technical approaches provide us with deeper understanding of the way chromatin dynamically packages our genome and participates in the regulation of cellular metabolism

    Evaluation of the climbing drum peel (CDP) test for the determination of the mode I fracture toughness of monolithic laminated composite specimens

    No full text
    International audienceThe inter-laminar fracture toughness is a measure of the delamination resistance of a laminated composite system. Its rigorous experimental evaluation requires a number of precautions in the choice of the test setup and post-treatment. In this paper, we consider two different tests for the mode I fracture toughness: the classical Double Cantilever Beam (DCB) test and the Climbing Drum Peel (CDP) test, which is standard in the "adhesives" community and which is first applied here to monolithic composite specimens. The two tests are compared in terms of setup, post-treatment and results on different types of specimens. The CDP appears to have a number of advantages over the DCB, and thus it represents an interesting alternative for the determination of the mode I fracture toughness

    Experimental study of the propagation of delamination under oxidizing environment and mechanical loading

    No full text
    International audienceOxidation of the polymer plays a crucial role in the degradation of composites in high temperature applications. Even in the absence of external mechanical loads, cracks can develop and allow the oxygen to penetrate deep into the composite. A new experimental method, allowing oxidation-driven crack propagation under different external mechanical loads, is proposed here to gain some insight on the chemo-mechanical coupled behavior of polymer matrix composites
    • …
    corecore