33 research outputs found

    Interference Phenomenon for the Faddeevian Regularization of 2D Chiral Fermionic Determinants

    Full text link
    The classification of the regularization ambiguity of 2D fermionic determinant in three different classes according to the number of second-class constraints, including the new faddeevian regularization, is examined and extended. We found a new and important result that the faddeevian class, with three second-class constraints, possess a free continuous one parameter family of elements. The criterion of unitarity restricts the parameter to the same range found earlier by Jackiw and Rajaraman for the two-constraints class. We studied the restriction imposed by the interference of right-left modes of the chiral Schwinger model (χQED2\chi QED_{2}) using Stone's soldering formalism. The interference effects between right and left movers, producing the massive vectorial photon, are shown to constrain the regularization parameter to belong to the four-constraints class which is the only non-ambiguous class with a unique regularization parameter.Comment: 15 pages, Revtex. Final version to be published in Phys. Rev.

    miR-132/212 knockout mice reveal roles for these miRNAs in regulating cortical synaptic transmission and plasticity

    Get PDF
    miR-132 and miR-212 are two closely related miRNAs encoded in the same intron of a small non-coding gene, which have been suggested to play roles in both immune and neuronal function. We describe here the generation and initial characterisation of a miR-132/212 double knockout mouse. These mice were viable and fertile with no overt adverse phenotype. Analysis of innate immune responses, including TLR-induced cytokine production and IFNβ induction in response to viral infection of primary fibroblasts did not reveal any phenotype in the knockouts. In contrast, the loss of miR-132 and miR-212, while not overtly affecting neuronal morphology, did affect synaptic function. In both hippocampal and neocortical slices miR-132/212 knockout reduced basal synaptic transmission, without affecting paired-pulse facilitation. Hippocampal long-term potentiation (LTP) induced by tetanic stimulation was not affected by miR-132/212 deletion, whilst theta burst LTP was enhanced. In contrast, neocortical theta burst-induced LTP was inhibited by loss of miR-132/212. Together these results indicate that miR-132 and/or miR-212 play a significant role in synaptic function, possibly by regulating the number of postsynaptic AMPA receptors under basal conditions and during activity-dependent synaptic plasticity

    Uso de equações lineares na determinação dos parâmetros de Michaelis-Menten

    No full text
    The Michaelis-Menten equation is used in many biochemical and bioinorganic kinetic studies involving homogeneous catalysis. Otherwise, it is known that determination of Michaelis-Menten parameters K M, Vmax, and k cat by the well-known Lineweaver-Burk double reciprocal linear equation does not produce the best values for these parameters. In this paper we present a discussion on different linear equations which can be used to calculate these parameters and we compare their results with the values obtained by the more reliable nonlinear least-square fit

    Data from: Reflectance confocal microscopy features of BRAF V600E mutated thin melanomas detected by immunohistochemistry

    No full text
    The classification of melanoma into four histological subtypes has been questioned regarding its clinical validity in providing relevant information for treatment for metastatic tumors. Specific genetic alterations are associated with particular clinical and histopathological features, suggesting that these could be helpful in refining existing melanoma classification schemes. We analyzed BRAF V600E mutated melanomas to explore the Reflectance confocal microscopy (RCM) utility as a screening aid in the evaluation of the most appropriate patients for genetic testing. Thus, 32 melanomas were assessed regarding their BRAF V600E mutational status. Experts blinded to dermoscopic images and V600E immunohistochemistry results evaluated RCM images regarding previously described melanoma features. BRAF positive melanomas were related to younger age (p=0.035), invasive melanomas (p=0.03) and to the presence of hiporreflective cells (p=0.02), epidermal nests (p=0.02), dermal-epidermal junction nests (p=0.05), edged papillae (p=0.05), and bright dots (p=0.05), and to absence of junctional thickening due to isolated cells (p=0.01) and meshwork (p=0.02). This study can not characterize other mutations in the BRAF, because the immunohistochemistry is specific to the type V600E. The findings should encourage the genetic evaluation of BRAF mutation. This study highlights the potential of RCM as a supplementary tool in the screening of BRAF-mutated melanomas

    Data from: Reflectance confocal microscopy features of BRAF V600E mutated thin melanomas detected by immunohistochemistry

    No full text
    The classification of melanoma into four histological subtypes has been questioned regarding its clinical validity in providing relevant information for treatment for metastatic tumors. Specific genetic alterations are associated with particular clinical and histopathological features, suggesting that these could be helpful in refining existing melanoma classification schemes. We analyzed BRAF V600E mutated melanomas to explore the Reflectance confocal microscopy (RCM) utility as a screening aid in the evaluation of the most appropriate patients for genetic testing. Thus, 32 melanomas were assessed regarding their BRAF V600E mutational status. Experts blinded to dermoscopic images and V600E immunohistochemistry results evaluated RCM images regarding previously described melanoma features. BRAF positive melanomas were related to younger age (p=0.035), invasive melanomas (p=0.03) and to the presence of hiporreflective cells (p=0.02), epidermal nests (p=0.02), dermal-epidermal junction nests (p=0.05), edged papillae (p=0.05), and bright dots (p=0.05), and to absence of junctional thickening due to isolated cells (p=0.01) and meshwork (p=0.02). This study can not characterize other mutations in the BRAF, because the immunohistochemistry is specific to the type V600E. The findings should encourage the genetic evaluation of BRAF mutation. This study highlights the potential of RCM as a supplementary tool in the screening of BRAF-mutated melanomas

    Reflectance confocal microscopy features of BRAF V600E mutated thin melanomas detected by immunohistochemistry.

    No full text
    The classification of melanoma into four histological subtypes has been questioned regarding its clinical validity in providing relevant information for treatment for metastatic tumors. Specific genetic alterations are associated with particular clinical and histopathological features, suggesting that these could be helpful in refining existing melanoma classification schemes. We analyzed BRAF V600E mutated melanomas to explore the Reflectance confocal microscopy (RCM) utility as a screening aid in the evaluation of the most appropriate patients for genetic testing. Thus, 32 melanomas were assessed regarding their BRAF V600E mutational status. Experts blinded to dermoscopic images and V600E immunohistochemistry results evaluated RCM images regarding previously described melanoma features. BRAF positive melanomas were related to younger age (p = 0.035), invasive melanomas (p = 0.03) and to the presence of hiporreflective cells (p = 0.02), epidermal nests (p = 0.02), dermal-epidermal junction nests (p = 0.05), edged papillae (p = 0.05), and bright dots (p = 0.05), and to absence of junctional thickening due to isolated cells (p = 0.01) and meshwork (p = 0.02). This study can not characterize other mutations in the BRAF, because the immunohistochemistry is specific to the type V600E. The findings should encourage the genetic evaluation of BRAF mutation. This study highlights the potential of RCM as a supplementary tool in the screening of BRAF-mutated melanomas
    corecore