35 research outputs found

    Alternative Conceptions and the Learning of Chemistry

    Get PDF
    A great deal of research has indicated that teaching is rarely a matter of introducing learners to material that simply replaces previous ignorance, but is more often a matter of presenting ideas that are somewhat at odds with existing understanding. In subjects such as chemistry, learners at school and university come to their studies already holding misconceptions or 'alternative conceptions' of subject matter. This has implications for subsequent learning, and so for teaching. This article reviews a number of key issues: (i), the origins of these alternative conceptions; (ii), the nature of these ideas; and, (iii), how they influence learning of the chemistry curriculum. These issues are in turn significant for guidance on (a) how curriculum should be selected and sequenced, and (b) on the pedagogy likely to be most effective in teaching chemistry. A specific concern reported in chemistry education is that one source of alternative conceptions seems to be instruction itself.None

    Can oil palm plantations be made more hospitable for forest butterflies and birds?

    No full text
    1. Rising global demand for palm oil is likely to exacerbate deforestation rates in oil palm-producing countries. This will lead to a net reduction in biodiversity unless measures can be taken to improve the value of oil palm plantations. 2. Here, I investigate whether the biodiversity of oil palm plantations can be increased by determining how forest-dwelling butterflies and birds in these plantations are affected by vegetation characteristics at the local level (e.g. epiphyte prevalence) and by natural forest cover at the landscape level (e.g. old-growth forests surrounding oil palm estates). 3. Across transects, vegetation variables explained 0-1.2% of the variation in butterfly species richness and 0-7% of that in bird species richness. The most important predictors of species richness across transects were percentage ground cover of weeds for butterflies; and epiphyte prevalence and presence of leguminous crops for birds. Across estates, natural forest cover explained 1.2-12.9% of the variation in butterfly species richness and 0.6-53.3% of variation in bird species richness. The most important predictors of species richness across estates were percentage cover of old-growth forests surrounding an estate for butterflies; and percentage cover of young secondary forests surrounding an estate for birds. 4. Synthesis and applications. In order to maximize biodiversity in oil palm plantations, oil palm companies and local governments should work together to preserve as much of the remaining natural forests as possible by, for example, creating forested buffer zones around oil palm estates or protecting remnant forest patches in the landscape. © 2008 The Author.Lian Pin Ko
    corecore