182 research outputs found
A Study of the Scintillation Induced by Alpha Particles and Gamma Rays in Liquid Xenon in an Electric Field
Scintillation produced in liquid xenon by alpha particles and gamma rays has
been studied as a function of applied electric field. For back scattered gamma
rays with energy of about 200 keV, the number of scintillation photons was
found to decrease by 64+/-2% with increasing field strength. Consequently, the
pulse shape discrimination power between alpha particles and gamma rays is
found to reduce with increasing field, but remaining non-zero at higher fields.Comment: 15 pages, 12 figures, accepted by Nuclear Instruments and Methods in
Physics Research
The ZEPLIN II dark matter detector: data acquisition system and data reduction
ZEPLIN-II is a two-phase (liquid/gas) xenon dark matter detector searching
for WIMP-nucleon interactions. In this paper we describe the data acquisition
system used to record the data from ZEPLIN-II and the reduction procedures
which parameterise the data for subsequent analysis.Comment: 11 pages, 10 figure
New physics, the cosmic ray spectrum knee, and cross section measurements
We explore the possibility that a new physics interaction can provide an
explanation for the knee just above GeV in the cosmic ray spectrum. We
model the new physics modifications to the total proton-proton cross section
with an incoherent term that allows for missing energy above the scale of new
physics. We add the constraint that the new physics must also be consistent
with published cross section measurements, using cosmic ray observations,
an order of magnitude and more above the knee. We find that the rise in cross
section required at energies above the knee is radical. The increase in cross
section suggests that it may be more appropriate to treat the scattering
process in the black disc limit at such high energies. In this case there may
be no clean separation between the standard model and new physics contributions
to the total cross section. We model the missing energy in this limit and find
a good fit to the Tibet III cosmic ray flux data. We comment on testing the new
physics proposal for the cosmic ray knee at the Large Hadron Collider.Comment: 17 pages, 4 figure
The ZEPLIN II dark matter detector: data acquisition system and data reduction
ZEPLIN-II is a two-phase (liquid/gas) xenon dark matter detector searching
for WIMP-nucleon interactions. In this paper we describe the data acquisition
system used to record the data from ZEPLIN-II and the reduction procedures
which parameterise the data for subsequent analysis.Comment: 11 pages, 10 figure
Measurement of single electron emission in two-phase xenon
We present the first measurements of the electroluminescence response to the
emission of single electrons in a two-phase noble gas detector. Single
ionization electrons generated in liquid xenon are detected in a thin gas layer
during the 31-day background run of the ZEPLIN-II experiment, a two-phase xenon
detector for WIMP dark matter searches. Both the pressure dependence and
magnitude of the single-electron response are in agreement with previous
measurements of electroluminescence yield in xenon. We discuss different
photoionization processes as possible cause for the sample of single electrons
studied in this work. This observation may have implications for the design and
operation of future large-scale two-phase systems.Comment: 11 pages, 6 figure
Top-squark searches at the Tevatron in models of low-energy supersymmetry breaking
We study the production and decays of top squarks (stops) at the Tevatron
collider in models of low-energy supersymmetry breaking. We consider the case
where the lightest Standard Model (SM) superpartner is a light neutralino that
predominantly decays into a photon and a light gravitino. Considering the
lighter stop to be the next-to-lightest Standard Model superpartner, we analyze
stop signatures associated with jets, photons and missing energy, which lead to
signals naturally larger than the associated SM backgrounds. We consider both
2-body and 3-body decays of the top squarks and show that the reach of the
Tevatron can be significantly larger than that expected within either the
standard supergravity models or models of low-energy supersymmetry breaking in
which the stop is the lightest SM superpartner. For a modest projection of the
final Tevatron luminosity, L = 4 fb-1, stop masses of order 300 GeV are
accessible at the Tevatron collider in both 2-body and 3-body decay modes. We
also consider the production and decay of ten degenerate squarks that are the
supersymmetric partners of the five light quarks. In this case we find that
common squark masses up to 360 GeV are easily accessible at the Tevatron
collider, and that the reach increases further if the gluino is light.Comment: 32 pages, 9 figures; references adde
Scaling solution, radion stabilization, and initial condition for brane-world cosmology
We propose a new, self-consistent and dynamical scenario which gives rise to
well-defined initial conditions for five-dimensional brane-world cosmologies
with radion stabilization. At high energies, the five-dimensional effective
theory is assumed to have a scale invariance so that it admits an expanding
scaling solution as a future attractor. The system automatically approaches the
scaling solution and, hence, the initial condition for the subsequent
low-energy brane cosmology is set by the scaling solution. At low energies, the
scale invariance is broken and a radion stabilization mechanism drives the
dynamics of the brane-world system. We present an exact, analytic scaling
solution for a class of scale-invariant effective theories of five-dimensional
brane-world models which includes the five-dimensional reduction of the
Horava-Witten theory, and provide convincing evidence that the scaling solution
is a future attractor.Comment: 17 pages; version accepted for PRD, references adde
Cosmic Microwave Background constraint on residual annihilations of relic particles
Energy injected into the Cosmic Microwave Background at redshifts z<10^6 will
distort its spectrum permanently. In this paper we discuss the distortion
caused by annihilations of relic particles. We use the observational bounds on
deviations from a Planck spectrum to constrain a combination of annihilation
cross section, mass, and abundance. For particles with (s-wave) annihilation
cross section, =\sigma_0, the bound is
f[(\sigma_0/6e-27cm^3/s)(\Omega_{X\bar{X}}h^2)^2]/(m_X/MeV)<0.2, where m_X is
the particle mass, \Omega_{X\bar{X}} is the fraction of the critical density
the particle and its antiparticle contribute if they survive to the present
time, h=H_0/(100km/s/Mpc), H_0 is the Hubble constant, and f is the fraction of
the annihilation energy that interacts electromagnetically. We also compute the
less stringent limits for p-wave annihilation. We update other bounds on
residual annihilations and compare them to our CMB bound.Comment: submitted to Phys. Rev.
Unconventional Cosmology
I review two cosmological paradigms which are alternative to the current
inflationary scenario. The first alternative is the "matter bounce", a
non-singular bouncing cosmology with a matter-dominated phase of contraction.
The second is an "emergent" scenario, which can be implemented in the context
of "string gas cosmology". I will compare these scenarios with the inflationary
one and demonstrate that all three lead to an approximately scale-invariant
spectrum of cosmological perturbations.Comment: 45 pages, 10 figures; invited lectures at the 6th Aegean Summer
School "Quantum Gravity and Quantum Cosmology", Chora, Naxos, Greece, Sept.
12 - 17 2012, to be publ. in the proceedings; these lecture notes form an
updated version of arXiv:1003.1745 and arXiv:1103.227
Exponential Potentials for Tracker Fields
We show that a general, exact cosmological solution, where dynamics of scalar
field is assigned by an exponential potential, fulfils all the issues of dark
energy approach, both from a theoretical point of view and in comparison with
available observational data. Moreover, tracking conditions are discussed, with
a new treatment of the well known condition . We prove that the
currently used expression for is wrong.Comment: 29 pages,12 figures; contact [email protected]; revised version, to
appear in Physical Review
- …