1,906 research outputs found

    Vibrational-Resonance Enhancement of Positron Annihilation in Molecules

    Get PDF
    A first study of positron annihilation as a function of positron energy was performed. The rate of annihilation of low-energy positrons in molecular gases was discussed. It was shown that the large observed values of annihilation rates are due to the excitation of long-lived vibrational resonances of the positron-molecule complex. The results are consistent with a theoretical model of resonant annihilation

    Intelligent chilled mirror humidity sensor

    Get PDF
    A new, intelligent, chilled mirror humidity instrument has been designed for use on buoys and ships. The design goal is to make high quality dew point temperature measurements for a period of up to one year from an unattended platform, while consuming as little power as possible. Nominal system accuracy is 0.3°C, and a measure of data quality is provided to indicate possible drift in calibration. Energy consumption is typically 800 Joules per measurement; standby power consumption is 0.05 watts. Control of the instrument is managed by an onboard central processing unit which is programmable in BASIC, and communication to an external data logger is provided through an RS232 compatible interface. This report describes the preliminary sensor tests that led to this new design and provides the complete technical description required for fabrication.Funding was provided by the Office of Naval Research under contract Number N00014-84-C-0134, and the National Science Foundation through grant Number OCE87- 09614

    Mixing of Multiple Jets with a Confined Subsonic Crossflow in a Cylindrical Duct

    Get PDF
    This paper summarizes NASA-supported experimental and computational results on the mixing of a row of jets with a confined subsonic crossflow in a cylindrical duct. The studies from which these results were derived investigated flow and geometric variations typical of the complex 3-D flowfield in the combustion chambers in gas turbine engines. The principal observations were that the momentum-flux ratio and the number of orifices were significant variables. Jet penetration was critical, and jet penetration decreased as either the number of orifices increased or the momentum-flux ratio decreased. It also appeared that jet penetration remained similar with variations in orifice size, shape, spacing, and momentum-flux ratio when the number of orifices was proportional to the square-root of the momentum-flux ratio. In the cylindrical geometry, planar variances are very sensitive to events in the near wall region, so planar averages must be considered in context with the distributions. The mass-flow ratios and orifices investigated were often very large (mass-flow ratio greater than 1 and ratio of orifice area-to-mainstream cross-sectional area up to 0.5), and the axial planes of interest were sometimes near the orifice trailing edge. Three-dimensional flow was a key part of efficient mixing and was observed for all configurations. The results shown also seem to indicate that non-reacting dimensionless scalar profiles can emulate the reacting flow equivalence ratio distribution reasonably well. The results cited suggest that further study may not necessarily lead to a universal 'rule of thumb' for mixer design for lowest emissions, because optimization will likely require an assessment for a specific application

    Diversity of animal communities on southwestern rangelands: Species patterns, habitat relationships, and land management

    Get PDF
    The rangelands of the southwestern United States comprise a mosaic of biome types, including deserts, grasslands, chaparral, woodlands, forests, subalpine meadows, and alpine tundra. Taken together, these ecosystems support exceptionally high numbers of vertebrate and invertebrate animal species. Biogeographic patterns of mammal, bird, and reptile species across North America show trends of increasing species numbers for these vertebrate groups, and some invertebrate groups, occur in Texas, New Mexico, Arizona, and California, especially in the border region with Mexico. Underlying causes of the region\u27s high biodiversity are related to (1) the elevational variability inherent in the basin-and-range topography, with its concomitant range of climate conditions, (2) the diverse biogeographic history of the region, particularly with respect to the merging of major faunal groups during glacier retreats, and (3) the architectural variations in vegetation structure across the region\u27s component ecosystems. Climate dynamics and disturbance also play major roles in maintaining a habitat mosaic, promoting greater regional faunal diversity. Disturbances affect animal diversity at many scales, from individuals\u27 home ranges to continental species\u27 distributions. Human activities have generated new suites of disturbances (livestock grazing, timber harvesting, mining, agriculture, prescribed fires, construction of roads and buildings), many of which contribute to the habitat patchiness of the landscape. Studies have shown that these disturbances prove beneficial to some species and detrimental to others. Hence, local increases in biodiversity can be orchestrated by creating or maintaining habitat diversity and disturbance regimes. Such management strategies can be scaled up to regional landscapes, in which areas of intensive human land use and disturbance are interspersed with regions of little or no human interference. Historically, this has been accomplished at local or state levels on an ad hoc bases (i.e., crisis management), with little evidence of long-term, large-scale, regional planning or coordination. If faunal biodiversity is to be preserved and enhanced on southwestern rangelands, human activities must be managed in a fashion that integrates faunal biology, resource requirements, and movement patterns with landscape scale attributes. Therefore, the task of the modern land manager will be to balance carefully the various scales and intensities of human activities, for the purpose of promoting sustainable use of natural resources and assuring the maintenance or enhancement of biodiversity. Future regional planning for biodiversity attributes will clearly require extensive communication and close cooperation among concerned citizens, private landowners, scientists, and government land managers

    A waterbody typology derived from catchment controls using self-organising maps

    Get PDF
    Multiple catchment controls contribute to the geomorphic functioning of river systems at the reach-level, yet only a limited number are usually considered by river scientists and managers. This study uses multiple morphometric, geological, climatic and anthropogenic catchment characteristics to produce a single national typology of catchment controls in England and Wales. Self-organising maps, a machine learning technique, are used to reduce the complexity of the GIS-derived characteristics to classify 4485 Water Framework Directive waterbodies into seven types. The waterbody typology is mapped across England and Wales, primarily reflecting an upland to lowland gradient in catchment controls and secondarily reflecting the heterogeneity of the catchment landscape. The seven waterbody types are evaluated using reach-level physical habitat indices (including measures of sediment size, flow, channel modification and diversity) extracted from River Habitat Survey data. Significant differences are found between each of the waterbody types for most habitat indices suggesting that the GIS-derived typology has functional application for reach-level habitats. This waterbody typology derived from catchment controls is a valuable tool for understanding catchment influences on physical habitats. It should prove useful for rapid assessment of catchment controls for river management, especially where regulatory compliance is based on reach-level monitoring

    Dapagliflozin add-on to metformin in type 2 diabetes inadequately controlled with metformin:a randomized, double-blind, placebo-controlled 102-week trial

    Get PDF
    Background: Management of type 2 diabetes with metformin often does not provide adequate glycemic control, thereby necessitating add-on treatment. In a 24-week clinical trial, dapagliflozin, an investigational sodium glucose cotransporter 2 inhibitor, improved glycemic control in patients inadequately controlled with metformin. The present study is an extension that was undertaken to evaluate dapagliflozin as long-term therapy in this population.Methods: This was a long-term extension (total 102 weeks) of a 24-week phase 3, multicenter, randomized, placebo-controlled, double-blind, parallel-group trial. Patients were randomly assigned (1:1:1:1) to blinded daily treatment (placebo, or dapagliflozin 2.5 to 5, or 10 mg) plus open-label metformin (=1,500 mg). The previously published primary endpoint was change from baseline in glycated hemoglobin (HbA1c) at 24 weeks. This paper reports the follow-up to week 102, with analysis of covariance model performed at 24 weeks with last observation carried forward; a repeated measures analysis was utilized to evaluate changes from baseline in HbA1c, fasting plasma glucose (FPG), and weight.Results: A total of 546 patients were randomized to 1 of the 4 treatments. The completion rate for the 78-week double-blind extension period was lower for the placebo group (63.5%) than for the dapagliflozin groups (68.3% to 79.8%). At week 102, mean changes from baseline HbA1c (8.06%) were +0.02% for placebo compared with -0.48% (P = 0.0008), -0.58% (

    Clostridium difficile Infection in Outpatients, Maryland and Connecticut, USA, 2002–2007

    Get PDF
    Clostridium difficile, the most commonly recognized diarrheagenic pathogen among hospitalized persons, can cause outpatient diarrhea. Of 1,091 outpatients with diarrhea, we found 43 (3.9%) who were positive for C. difficile toxin. Only 7 had no recognized risk factors, and 3 had neither risk factors nor co-infection with another enteric pathogen

    The association between serum biomarkers and disease outcome in influenza A(H1N1)pdm09 virus infection: results of two international observational cohort studies

    Get PDF
    BACKGROUND Prospective studies establishing the temporal relationship between the degree of inflammation and human influenza disease progression are scarce. To assess predictors of disease progression among patients with influenza A(H1N1)pdm09 infection, 25 inflammatory biomarkers measured at enrollment were analyzed in two international observational cohort studies. METHODS Among patients with RT-PCR-confirmed influenza A(H1N1)pdm09 virus infection, odds ratios (ORs) estimated by logistic regression were used to summarize the associations of biomarkers measured at enrollment with worsened disease outcome or death after 14 days of follow-up for those seeking outpatient care (FLU 002) or after 60 days for those hospitalized with influenza complications (FLU 003). Biomarkers that were significantly associated with progression in both studies (p<0.05) or only in one (p<0.002 after Bonferroni correction) were identified. RESULTS In FLU 002 28/528 (5.3%) outpatients had influenza A(H1N1)pdm09 virus infection that progressed to a study endpoint of complications, hospitalization or death, whereas in FLU 003 28/170 (16.5%) inpatients enrolled from the general ward and 21/39 (53.8%) inpatients enrolled directly from the ICU experienced disease progression. Higher levels of 12 of the 25 markers were significantly associated with subsequent disease progression. Of these, 7 markers (IL-6, CD163, IL-10, LBP, IL-2, MCP-1, and IP-10), all with ORs for the 3(rd) versus 1(st) tertile of 2.5 or greater, were significant (p<0.05) in both outpatients and inpatients. In contrast, five markers (sICAM-1, IL-8, TNF-α, D-dimer, and sVCAM-1), all with ORs for the 3(rd) versus 1(st) tertile greater than 3.2, were significantly (p≤.002) associated with disease progression among hospitalized patients only. CONCLUSIONS In patients presenting with varying severities of influenza A(H1N1)pdm09 virus infection, a baseline elevation in several biomarkers associated with inflammation, coagulation, or immune function strongly predicted a higher risk of disease progression. It is conceivable that interventions designed to abrogate these baseline elevations might affect disease outcome

    Holographic RG Flows and Universal Structures on the Coulomb Branch of N=2 Supersymmetric Large n Gauge Theory

    Full text link
    We report on our results of D3-brane probing a large class of generalised type IIB supergravity solutions presented very recently in the literature. The structure of the solutions is controlled by a single non-linear differential equation. These solutions correspond to renormalisation group flows from pure N=4 supersymmetric gauge theory to an N=2 gauge theory with a massive adjoint scalar. The gauge group is SU(n) with n large. After presenting the general result, we focus on one of the new solutions, solving for the specific coordinates needed to display the explicit metric on the moduli space. We obtain an appropriately holomorphic result for the coupling. We look for the singular locus, and interestingly, the final result again manifests itself in terms of a square root branch cut on the complex plane, as previously found for a set of solutions for which the details are very different. This, together with the existence of the single simple non-linear differential equation, is further evidence in support of an earlier suggestion that there is a very simple model --perhaps a matrix model with relation to the Calogero-Moser integrable system-- underlying this gauge theory physics.Comment: 14 pages, LaTeX, 1 figur
    corecore