26 research outputs found

    The complete sequence and coding content of snowshoe hare bunyavirus small (S) viral RNA species.

    No full text
    The complete sequence of the small (S) viral RNA species of snowshoe hare (SSH) bunyavirus has been determined, principally from a DNA copy of the RNA cloned in the E.coli plasmid pBr322. The viral S RNA (negative sense strand) is 982 nucleotides long (3.3 x 10(5) daltons) with complementary 5' and 3' end sequences. It has a base composition of 30.5%U, 25.8%A, 24.9%C and 18.7%G. In the viral complementary (plus sense) strand there are two overlapping open reading frames initiated by methionine codons. One reading frame codes for a 26.8 x 10(3) dalton protein, the other for a 10.5 x 10(3) dalton protein. The larger gene product is presumably related to the viral nucleoprotein (N) that is coded by the S RNA (Gentsch and Bishop (1978) J. Virol. 28, 417-419). The smaller gene product is probably related to the recently identified S RNA coded nonstructural protein (NSS) induced in virus infected cells (Fuller and Bishop (1982) J. Virol. 41, 643-648)

    Dugbe nairovirus S segment: Correction of published sequence and comparison of five isolates

    Get PDF
    The sequence of the S (small) RNA segment of the ArD 44313 isolate of Dugbe nairovirus (DUG) has been redetermined, and a number of apparent errors in the previously reported sequence (V. K. Ward, A. C. Marriott, A. A. El-Ghorr, and P. A. Nuttall, 1990, Virology 175, 518–524) were revealed. Our results indicate that the S RNA is 1716 nucleotides (nt) in length and contains one large open reading frame spanning 1449 nt. This can encode a 483 amino acid polypeptide, Mr 53.9 kDa, corresponding to the viral nucleocapsid protein N. The DUG N protein is thus similar in length to the N proteins of Hazara (HAZ) and Crimean–Congo haemorrhagic fever (CCHF) nairoviruses, which are 485 and 482 amino acids in length, respectively. S segment RNA sequences were also determined for DUG isolates IbAr 1792, IbH 11480, ArD 16095, and KT 281/75; only the KT 281/75 sequence differed markedly from that of ArD 44313. Phylogenetic trees were constructed for these nairovirus S segment sequences
    corecore