15 research outputs found

    Diurnal, seasonal, and annual trends in atmospheric CO<sub>2</sub> at southwest London during 2000-2012:Wind sector analysis and comparison with Mace Head, Ireland

    Get PDF
    In-situ measurements of atmospheric CO have been made at Royal Holloway University of London (RHUL) in Egham (EGH), Surrey, UK from 2000 to 2012. The data were linked to the global scale using NOAA-calibrated gases. Measured CO varies on time scales that range from minutes to inter-annual and annual cycles. Seasonality and pollution episodes occur each year. Diurnal cycles vary with daylight and temperature, which influence the biological cycle of CO and the degree of vertical mixing. Anthropogenic emissions of CO dominate the variability during weekdays when transport cycles are greater than at weekends. Seasonal cycles are driven by temporal variations in biological activity and changes in combustion emissions. Maximum mole fractions (μmol/mol) (henceforth referred to by parts per million, ppm) occur in winter, with minima in late summer. The smallest seasonal amplitude observed, peak to trough, was 17.0ppm CO in 2003, whereas the largest amplitude observed was 27.1ppm CO in 2008.Meteorology can strongly modify the CO mole fractions at different time scales. Analysis of eight 45° wind sectors shows that the highest CO mole fractions were recorded from the E and SE sectors. Lowest mole fractions were observed for air masses from the S and SW. Back-trajectory and meteorological analyses of the data confirm that the dominant sources of CO are anthropogenic emissions from London and SE England. The largest annual rate of increase in the annual average of CO, 3.26ppmyr (

    Diurnal, seasonal, and annual trends in tropospheric CO in Southwest London during 2000–2015: Wind sector analysis and comparisons with urban and remote sites

    Get PDF
    Ambient carbon monoxide (CO) and meteorological parameters measured at the Egham (EGH) semi-rural site in SW London during 2000–2015 have permitted wind sector analysis of diurnal and seasonal cycles, and interpretation of long-term trends. CO daily amplitudes are used as a proxy for anthropogenic emissions. At EGH, morning and evening peaks in CO arise from the dominant contribution of road transport sources. Smaller amplitudes are observed during weekends than weekdays due to lower combustion emissions, and for mornings compared to evenings due to the timing of the development and break-up of the nocturnal inversion layer or planetary boundary layer (PBL). A wavelet transform revealed that the dominant mode of CO variability is the annual cycle, with apparent winter maxima likely due to increased CO emissions from domestic heating with summer minima ascribed to enhanced dispersion and dilution during the annual maximum of PBL mixing heights. Over the last two decades, both mitigation measures to reduce CO emissions and also a major switch to diesel cars, have accompanied a change at EGH from the dominance of local diurnal sources to a site measuring close to Atlantic background levels in summer months. CO observed in the S and SW wind sectors has declined by 4.7 and 5.9 ppb yr−1 respectively. The EGH CO record shows the highest levels in the early 2000s, with levels in E and calm winds comparable to those recorded at background stations in Greater London. However, since 2012, levels in S-SW sector have become more comparable with Mace Head background except during rush-hour periods. Marked declines in CO are observed during 2000–2008 for the NE, E, SE (London) and calm wind sectors, with the smallest declines observed for the S, SW and W (background) sectors. For the majority of wind sectors, the decline in CO is less noticeable since 2008, with an apparent stabilisation for NE, E and SE after 2009. The EGH CO data record exhibits a similar but slower exponential decay, but from a much lower starting concentration, than do CO data recorded at selected monitoring sites in urban areas in SE England. CO/CO2 residuals determined using a 1 h window data in the diurnal cycle demonstrate a clear decline in CO from 2000 to 2015 during daily periods of increased vehicle traffic, which is consistent with a sustained reduction in CO emissions from the road transport sector

    Measurements of air pollutants in the troposphere

    Get PDF
    This article describes the principles, applications and performances of methods to measure gas-phase air pollutants that either utilise passive or active sampling with subsequent laboratory analysis, or involve automated in-situ sampling and analysis. It focuses on air pollutants that have adverse impact upon human health (nitrogen dioxide, carbon monoxide, sulphur dioxide and benzene), vegetation (ozone) or climate change (ozone, carbon dioxide, methane) and nitrous oxide). It begins with an explanation of why air pollutants are measured, and concludes with prospects for the future, and an illustration of recent trends in air pollutants derived from road traffic recorded in central London

    Measurement techniques in gas-phase tropospheric chemistry: a selective view of the past, present, and future

    No full text
    Measurements of trace gases and photolysis rates in the troposphere are essential for understanding photochemical smog and global environmental change. Chemical measurement techniques have progressed enormously since the first regular observations of tropospheric ozone in the 19th century. In contrast, by the 1940s spectroscopic measurements were already of a quality that would have allowed the use of modern analysis techniques to reduce interference between gases, although such techniques were not applied at the time. Today, chemical and spectroscopic techniques complement each other on a wide range of platforms. The boundaries between spectroscopic techniques will retreat as more Fourier transform spectrometers are used at visible wavelengths and as wide-band lidars are extended, and combining chemical techniques will allow detection of more trace gases with better sensitivity. Other future developments will focus on smaller, lighter instruments to take advantage of new platforms such as unmanned aircraft and to improve the effectiveness of urban sampling

    Measurements of PAN in the polluted boundary layer and free troposphere using a luminol-NO detector combined with a thermal converter

    No full text
    Peroxyacetyl nitrate (PAN, CHC(O)ONO) has been measured in the polluted boundary layer and free troposphere by thermal conversion to nitrogen dioxide (NO) followed by detection of the decomposition product with a Scintrex LMA-3 NO-luminol instrument. Following laboratory tests of the efficiency of PAN conversion and investigations of possible interferences, the technique was evaluated at the West Beckham TOR (Tropospheric Ozone Research) Station near the north Norfolk coast in Eastern England between September 1989 and August 1990. PAN measured by the new technique was reasonably well correlated with PAN recorded using electron capture gas chromatography (EC/GC). PAN was also well correlated with ozone (O) in the summer months. Spring and autumn episodes of simultaneously high concentrations of PAN and O were examined in conjunction with air parcel back-trajectories and synoptic- and local-scale meteorology in a study of the sources of photooxidants on the east coast of England. Spring-time measurements of PAN made in the free troposphere in a light aircraft at altitudes up to 3.1 km showed the presence of 0.54 and 0.26 ppbv PAN in polar maritime and mid-latitude oceanic air masses, respectively. The technique is particularly suited to airborne applications because potential interferences are minimised and the frequency of measurements is higher than generally achieved with EC/GC methods

    Upgrading photolysis in the p-TOMCAT CTM: Model validation and assessment of the role of clouds.

    No full text
    A new version of the p-TOMCAT Chemical Transport Model (CTM) which includes an improved photolysis code, Fast-JX, is validated. Through offline testing we show that Fast-JX captures well the observed J(NO(2)) and J(O(1)D) values obtained at Weybourne and during a flight above the Atlantic, though with some overestimation of J(O(1)D) when comparing to the aircraft data. By comparing p-TOMCAT output of CO and ozone with measurements, we find that the inclusion of Fast-JX in the CTM strongly improves the latter's ability to capture the seasonality and levels of tracers' concentrations. A probability distribution analysis demonstrates that photolysis rates and oxidant (OH, ozone) concentrations cover a broader range of values when using Fast-JX instead of the standard photolysis scheme. This is not only driven by improvements in the seasonality of cloudiness but also even more by the better representation of cloud spatial variability. We use three different cloud treatments to study the radiative effect of clouds on the abundances of a range of tracers and find only modest effects on a global scale. This is consistent with the most relevant recent study. The new version of the validated CTM will be used for a variety of future studies examining the variability of tropospheric composition and its drivers

    A feasibility study of the use of reactive tracers to determine outdoor daytime OH radical concentrations within the urban environment

    No full text
    Using a specifically designed chemical tracer to indirectly measure local atmospheric hydroxyl radical (OH) concentrations is a very appealing concept. Such a tracer will provide information on the amount of OH a tracer encounters, as it moves through the urban environment and provide a stringent test of models. However, to date an outdoor experiment such as this has not been conducted. This article discusses the reasons why this is so and examines the feasibility of using tracers to measure integrated urban OH levels over short (≤1km) distances

    Use of Reactive Tracers To Determine Ambient OH Radical Concentrations: Application within the Indoor Environment

    No full text
    The hydroxyl radical (OH) plays a key role in determining indoor air quality. However, its highly reactive nature and low concentration indoors impede direct analysis. This paper describes the techniques used to indirectly quantify indoor OH, including the development of a new method based on the instantaneous release of chemical tracers into the air. This method was used to detect ambient OH in two indoor seminar rooms following tracer detection by gas chromatography-mass spectrometry (GCMS). The results from these tests add to the small number of experiments that have measured indoor OH which are discussed with regard to future directions within air quality research
    corecore