305 research outputs found

    Foot pressure distributions during walking in African elephants (Loxodonta africana)

    Get PDF
    Elephants, the largest living land mammals, have evolved a specialized foot morphology to help reduce locomotor pressures while supporting their large body mass. Peak pressures that could cause tissue damage are mitigated passively by the anatomy of elephants' feet, yet this mechanism does not seem to work well for some captive animals. This study tests how foot pressures vary among African and Asian elephants from habitats where natural substrates predominate but where foot care protocols differ. Variations in pressure patterns might be related to differences in husbandry, including but not limited to trimming and the substrates that elephants typically stand and move on. Both species' samples exhibited the highest concentration of peak pressures on the lateral digits of their feet (which tend to develop more disease in elephants) and lower pressures around the heel. The trajectories of the foot's centre of pressure were also similar, confirming that when walking at similar speeds, both species load their feet laterally at impact and then shift their weight medially throughout the step until toe-off. Overall, we found evidence of variations in foot pressure patterns that might be attributable to husbandry and other causes, deserving further examination using broader, more comparable samples

    Monitoring synaptic function at the neuromuscular junction of a mouse expressing synaptopHluorin

    Get PDF
    We monitored presynaptic exocytosis and vesicle recycling at neuromuscular junctions of transgenic mice expressing synaptopHluorin (spH), using simultaneous optical and electrophysiological recordings. Synaptic transmission was indistinguishable from that in wildtype controls. Fluorescence rose during and decayed monotonically after stimulus trains to the nerve, with amplitudes and decay times increasing with the amount of stimulation. The relatively large size of synaptic terminals allowed us to examine the spatial profile of fluorescence changes. We identified hot spots of exocytosis, which were stable with repeated trains. Photobleach experiments showed that spH freshly exposed by nerve stimulation was not preferentially retrieved by compensatory endocytosis; instead, most retrieved spH preexisted in the surface membrane. Finally, we compared fluorescence and electrical [summed end-plate potentials (EPPs)] estimates of exocytosis, which diverged during repeated trains, as fluorescence exceeded summed EPPs, although the average amplitude of miniature EPPs was unchanged. This might reflect exocytosis of spH-containing, acetylcholine-free (“empty”) vesicles or other organelles during intense stimulation

    Genome sequences of two cold-adaptedCryobacterium spp. SO1 and SO2 from FildesPeninsula, Antarctica

    Get PDF
    Psychrophilic and psychrotrophic bacteria play important roles in nutrient cycling in cold environments. These bacteria are suitable as model organisms for studying cold-adaptation, and sources of cold-active enzymes and metabolites for industrial applications. Here, we report the genome sequences of two Cryobacterium sp. strains SO1 and SO2. Genes coding major proteins related to cold- or thermal-stress adaptations and those with industrial applications found in their genomes are described

    Genome sequences of two cold-adaptedCryobacterium spp. SO1 and SO2 from FildesPeninsula, Antarctica

    Get PDF
    Psychrophilic and psychrotrophic bacteria play important roles in nutrient cycling in cold environments. These bacteria are suitable as model organisms for studying cold-adaptation, and sources of cold-active enzymes and metabolites for industrial applications. Here, we report the genome sequences of two Cryobacterium sp. strains SO1 and SO2. Genes coding major proteins related to cold- or thermal-stress adaptations and those with industrial applications found in their genomes are described

    Safety and Immunogenicity of Human Serum Albumin-Free MMR Vaccine in US Children Aged 12–15 Months

    Get PDF
    Background: M-M-RTMII (MMRII; Merck & Co) is currently the only measles-mumps-rubella (MMR) vaccine licensed in the United States. Another licensed vaccine would reinforce MMR supply. This study assessed the immunogenicity of a candidate vaccine (PriorixTM, GlaxoSmithKline Vaccines [MMR-RIT]) when used as a first dose among eligible children in the United States. Methods: In this exploratory Phase-2, multicenter, observer-blind study, 1220 healthy subjects aged 12–15 months were randomized (3:3:3:3) and received 1 dose of 1 of 3 MMR-RIT lots with differing mumps virus titers (MMR-RIT-1 [4.8 log10]; MMR-RIT-2 [4.1 log10]; MMR-RIT-3 [3.7 log10] CCID50) or MMRII co-administered with hepatitis Avaccine (HAV), varicella vaccine (VAR) and 7-valent pneumococcal conjugate vaccine (PCV7). Immune response to measles, mumps, and rubella viruses was evaluated at Day 42 post-vaccination. Incidence of solicited injection site, general, and serious adverse events was assessed. Results: Seroresponse rates for MMR vaccine viral components in MMR-RIT lots were 98.3–99.2% (measles), 89.7–90.7% (mumps), and 97.5–98.8% (rubella), and for MMRII were 99.6%, 91.1%, and 100%, respectively. Immune responses to HAV, VAR, and PCV7 were similar when co-administered with any of the 3MMR-RITlotsorMMRII.T here were no apparent differences in solicited or serious adverse events among the 4 groups. Conclusions: Immune responses were above threshold levels for projected protection against the 3 viruses from MMR-RIT lots with differing mumps virus titers. MMR-RIT had an acceptable safety profile when co-administered with HAV, VAR, and PCV7. Clinical Trials Registration. NCT00861744; etrack; 11187

    Enrichment of lung microbiome with supraglottic taxa is associated with increased pulmonary inflammation

    Get PDF
    BACKGROUND: The lung microbiome of healthy individuals frequently harbors oral organisms. Despite evidence that microaspiration is commonly associated with smoking-related lung diseases, the effects of lung microbiome enrichment with upper airway taxa on inflammation has not been studied. We hypothesize that the presence of oral microorganisms in the lung microbiome is associated with enhanced pulmonary inflammation. To test this, we sampled bronchoalveolar lavage (BAL) from the lower airways of 29 asymptomatic subjects (nine never-smokers, 14 former-smokers, and six current-smokers). We quantified, amplified, and sequenced 16S rRNA genes from BAL samples by qPCR and 454 sequencing. Pulmonary inflammation was assessed by exhaled nitric oxide (eNO), BAL lymphocytes, and neutrophils. RESULTS: BAL had lower total 16S than supraglottic samples and higher than saline background. Bacterial communities in the lower airway clustered in two distinct groups that we designated as pneumotypes. The rRNA gene concentration and microbial community of the first pneumotype was similar to that of the saline background. The second pneumotype had higher rRNA gene concentration and higher relative abundance of supraglottic-characteristic taxa (SCT), such as Veillonella and Prevotella, and we called it pneumotype(SCT). Smoking had no effect on pneumotype allocation, α, or β diversity. Pneumotype(SCT) was associated with higher BAL lymphocyte-count (P= 0.007), BAL neutrophil-count (P= 0.034), and eNO (P= 0.022). CONCLUSION: A pneumotype with high relative abundance of supraglottic-characteristic taxa is associated with enhanced subclinical lung inflammation

    Stabilization of O-O Bonds by d(0) Cations in Li4+xNi1-xWO6 (0 <= x <= 0.25) Rock Salt Oxides as the Origin of Large Voltage Hysteresis

    Get PDF
    Multinary lithium oxides with the rock salt structure are of technological importance as cathode materials in rechargeable lithium ion batteries. Current state-of-the-art cathodes such as LiNi1/3Mn1/3Co1/3O2 rely on redox cycling of earth-abundant transition-metal cations to provide charge capacity. Recently, the possibility of using the oxide anion as a redox center in Li-rich rock salt oxides has been established as a new paradigm in the design of cathode materials with enhanced capacities (>200 mAh/g). To increase the lithium content and access electrons from oxygen-derived states, these materials typically require transition metals in high oxidation states, which can be easily achieved using d0 cations. However, Li-rich rock salt oxides with high valent d0 cations such as Nb5+ and Mo6+ show strikingly high voltage hysteresis between charge and discharge, the origin of which is uninvestigated. In this work, we study a series of Li-rich compounds, Li4+xNi1–xWO6 (0 ≤ x ≤ 0.25) adopting two new and distinct cation-ordered variants of the rock salt structure. The Li4.15Ni0.85WO6 (x = 0.15) phase has a large reversible capacity of 200 mAh/g, without accessing the Ni3+/Ni4+ redox couple, implying that more than two-thirds of the capacity is due to anionic redox, with good cyclability. The presence of the 5d0 W6+ cation affords extensive (>2 V) voltage hysteresis associated with the anionic redox. We present experimental evidence for the formation of strongly stabilized localized O–O single bonds that explain the energy penalty required to reduce the material upon discharge. The high valent d0 cation associates localized anion–anion bonding with the anion redox capacity

    Genome of a thermophilic bacterium Geobacillus sp. TFV3 from Deception Island, Antarctica

    Get PDF
    Thermophilic microorganisms have always been an important part of the ecosystem, particularly in a hot environment, as they play a key role in nutrient recycling at high temperatures where most microorganisms cannot cope. While most of the thermophiles are archaea, thermophiles can also be found among some species of bacteria. These bacteria are very useful in the fundamental study of heat adaptation, and they are also important as potential sources of thermostable enzymes and metabolites. Recently, we have isolated a Gram-positive thermophilic bacterium, Geobacillus sp. TFV3 from a volcanic soil sample from Deception Island, Antarctica. This project was undertaken to analyze the genes of this thermophilic Antarctic bacterium and to determine the presence of thermal-stress adaptation proteins in its genome. The genome of Geobacillus sp. TFV3 was first purified, sequenced, assembled, and annotated. The complete genome was found to harbor genes encoding for useful thermal-stress adaptation proteins. The majority of these proteins were categorized under the family of molecular chaperone and heat shock protein. This genomic information could eventually provide insights on how the bacterium adapts itself towards high growth temperatures

    Somatic mutations in lymphocytes in patients with immune-mediated aplastic anemia

    Get PDF
    The prevalence and functional impact of somatic mutations in nonleukemic T cells is not well characterized, although clonal T-cell expansions are common. In immune-mediated aplastic anemia (AA), cytotoxic T-cell expansions are shown to participate in disease pathogenesis. We investigated the mutation profiles of T cells in AA by a custom panel of 2533 genes. We sequenced CD4+ and CD8+ T cells of 24 AA patients and compared the results to 20 healthy controls and whole-exome sequencing of 37 patients with AA. Somatic variants were common both in patients and healthy controls but enriched to AA patients' CD8+ T cells, which accumulated most mutations on JAK-STAT and MAPK pathways. Mutation burden was associated with CD8+ T-cell clonality, assessed by T-cell receptor beta sequencing. To understand the effect of mutations, we performed single-cell sequencing of AA patients carrying STAT3 or other mutations in CD8+ T cells. STAT3 mutated clone was cytotoxic, clearly distinguishable from other CD8+ T cells, and attenuated by successful immunosuppressive treatment. Our results suggest that somatic mutations in T cells are common, associate with clonality, and can alter T-cell phenotype, warranting further investigation of their role in the pathogenesis of AA.Peer reviewe

    Monitoring activity-dependent bulk endocytosis with the genetically-encoded reporter VAMP4-pHluorin

    Get PDF
    AbstractBackgroundActivity-dependent bulk endocytosis (ADBE) is the dominant mode of synaptic vesicle (SV) endocytosis during intense neuronal activity, implicating it as a major contributor to presynaptic plasticity under these stimulation conditions. However methods to monitor this endocytosis mode have been limited to either morphological or optical observation of the uptake of large fluid phase markers.New methodWe present here a method to monitor ADBE using the genetically-encoded reporter VAMP4-pHluorin in primary neuronal cultures.ResultsIndividual nerve terminals expressing VAMP4-pHluorin display either an increase or decrease in fluorescence after stimulation terminates. The decrease in fluorescence reflects the slow acidification of large bulk endosomes to which VAMP4-pHluorin is selectively recruited. Use of VAMP4-pHluorin during sequential high frequency stimuli revealed that all nerve terminals perform ADBE, but not all do so in response to a single stimulus. VAMP4-pHluorin also displays a rapid activity-dependent decrease in fluorescence during high frequency stimulation, a response which is particularly prominent when expressed in hippocampal neurons. The molecular mechanism responsible for this decrease is still unclear, but is not due to loss of VAMP4-pHluorin from the nerve terminal.Comparison with existing methodsThis method allows the selective reporting of ADBE for the first time, when compared to previous approaches using markers of fluid phase uptake.ConclusionsThe development of VAMP4-pHluorin as a selective genetically-encoded reporter of ADBE increases the palette of approaches used to monitor this endocytosis mode both in vitro and in vivo
    corecore