40 research outputs found

    Detecting adaptive evolution in phylogenetic comparative analysis using the Ornstein-Uhlenbeck model

    Full text link
    Phylogenetic comparative analysis is an approach to inferring evolutionary process from a combination of phylogenetic and phenotypic data. The last few years have seen increasingly sophisticated models employed in the evaluation of more and more detailed evolutionary hypotheses, including adaptive hypotheses with multiple selective optima and hypotheses with rate variation within and across lineages. The statistical performance of these sophisticated models has received relatively little systematic attention, however. We conducted an extensive simulation study to quantify the statistical properties of a class of models toward the simpler end of the spectrum that model phenotypic evolution using Ornstein-Uhlenbeck processes. We focused on identifying where, how, and why these methods break down so that users can apply them with greater understanding of their strengths and weaknesses. Our analysis identifies three key determinants of performance: a discriminability ratio, a signal-to-noise ratio, and the number of taxa sampled. Interestingly, we find that model-selection power can be high even in regions that were previously thought to be difficult, such as when tree size is small. On the other hand, we find that model parameters are in many circumstances difficult to estimate accurately, indicating a relative paucity of information in the data relative to these parameters. Nevertheless, we note that accurate model selection is often possible when parameters are only weakly identified. Our results have implications for more sophisticated methods inasmuch as the latter are generalizations of the case we study.Comment: 38 pages, in press at Systematic Biolog

    Fueling Defense: Effects of Resources on the Ecology and Evolution of Tolerance to Parasite Infection

    Get PDF
    Resource availability is a key environmental constraint affecting the ecology and evolution of species. Resources have strong effects on disease resistance, but they can also affect the othermain parasite defense strategy, tolerance. A small but growing number of animal studies are beginning to investigate the effects of resources on tolerance phenotypes. Here, we review how resources affect tolerance strategies across animal taxa ranging from fruit flies to frogs to mice. Surprisingly, resources (quality and quantity) can increase or reduce tolerance, dependent upon the particular host-parasite system. To explore this seeming contradiction, we recast predictions of models of sterility tolerance and mortality tolerance in a resource-dependent context. Doing so reveals that resources can have very different epidemiological and evolutionary effects, depending on what aspects of the tolerance phenotype are affected. Thus, it is critical to consider both sterility and mortality in future empirical studies of how behavioral and environmental resource availability affect tolerance to infection

    Phenotypically Plastic Responses to Predation Risk Are Temperature Dependent

    Get PDF
    Predicting how organisms respond to climate change requires that we understand the temperature dependence of fitness in relevant ecological contexts (e.g., with or without predation risk). Predation risk often induces changes to life history traits that are themselves temperature dependent. We explore how perceived predation risk and temperature interact to determine fitness (indicated by the intrinsic rate of increase, r) through changes to its underlying components (net reproductive rate, generation time, and survival) in Daphnia magna. We exposed Daphnia to predation cues from dragonfly naiads early, late, or throughout their ontogeny. Predation risk increased r differentially across temperatures and depending on the timing of exposure to predation cues. The timing of predation risk likewise altered the temperature-dependent response of T and R0. Daphnia at hotter temperatures responded to predation risk by increasing r through a combination of increased R0 and decreased T that together countered an increase in mortality rate. However, only D. magna that experienced predation cues early in ontogeny showed elevated r at colder temperatures. These results highlight the fact that phenotypically plastic responses of life history traits to predation risk can be strongly temperature dependent

    Targeted Manipulation of Abundant and Rare Taxa in the Daphnia magna Microbiota with Antibiotics Impacts Host Fitness Differentially

    Get PDF
    Host-associated microbes contribute to host fitness, but it is unclear whether these contributions are from rare keystone taxa, numerically abundant taxa, or interactions among community members. Experimental perturbation of the microbiota can highlight functionally important taxa; however, this approach is primarily applied in systems with complex communities where the perturbation affects hundreds of taxa, making it difficult to pinpoint contributions of key community members. Here, we use the ecological model organism Daphnia magna to examine the importance of rare and abundant taxa by perturbing its relatively simple microbiota with targeted antibiotics. We used sublethal antibiotic doses to target either rare or abundant members across two temperatures and then measured key host life history metrics and shifts in microbial community composition. We find that removal of abundant taxa had greater impacts on host fitness than did removal of rare taxa and that the abundances of nontarget taxa were impacted by antibiotic treatment, suggesting that no rare keystone taxa exist in the Daphnia magna microbiota but that microbe-microbe interactions may play a role in host fitness. We also find that microbial community composition was impacted by antibiotics differently across temperatures, indicating that ecological context shapes within-host microbial responses and effects on host fitness

    A high-throughput method to quantify feeding rates in aquatic organisms: A case study with Daphnia

    Get PDF
    1. Food ingestion is one of the most basic features of all organisms. However, obtaining precise—and high-throughput—estimates of feeding rates remains challenging, particularly for small, aquatic herbivores such as zooplankton, snails, and tadpoles. These animals typically consume low volumes of food that are time-consuming to accurately measure. 2. We extend a standard high-throughput fluorometry technique, which uses a microplate reader and 96-well plates, as a practical tool for studies in ecology, evolution, and disease biology. We outline technical and methodological details to optimize quantification of individual feeding rates, improve accuracy, and minimize sampling error. 3. This high-throughput assay offers several advantages over previous methods, including i) substantially reduced time allotments per sample to facilitate larger, more efficient experiments; ii) technical replicates; and iii) conversion of in vivo measurements to units (mL-1 hr-1 ind-1) which enables broad-scale comparisons across an array of taxa and studies. 4. To evaluate the accuracy and feasibility of our approach, we use the zooplankton, Daphnia dentifera, as a case study. Our results indicate that this procedure accurately quantifies feeding rates and highlights differences among seven genotypes. 5. The method detailed here has broad applicability to a diverse array of aquatic taxa, their resources, environmental contaminants (e.g., plastics), and infectious agents. We discuss simple extensions to quantify epidemiologically relevant traits, such as pathogen exposure and transmission rates, for infectious agents with oral or trophic transmission

    Circadian rhythms mediate infection risk in \u3ci\u3eDaphnia dentifera\u3c/i\u3e

    Get PDF
    Biological rhythms mediate important within-host processes such as metabolism, immunity, and behavior which are often linked to combating disease exposure. For many hosts, exposure to pathogens occurs while feeding. However, the link between feeding rhythms and infection risk is unclear because feeding behavior is tightly coupled with immune and metabolic processes which may decrease susceptibility to infection. Here, we use the Daphnia dentifera–Metschnikowia bicuspidata host–pathogen system to determine how rhythms in feeding rate and immune function mediate infection risk. The host is known to have a nocturnal circadian rhythm in feeding rate, yet we found that they do not exhibit a circadian rhythm in phenoloxidase activity. We found that the time of day when individuals are exposed to pathogens affects the probability of infection with higher infection prevalence at night, indicating that infection risk is driven by a host\u27s circadian rhythm in feeding behavior. These results suggest that the natural circadian rhythm of the host should be considered when addressing epidemiological dynamics

    Circadian rhythms mediate infection risk in \u3ci\u3eDaphnia dentifera\u3c/i\u3e

    Get PDF
    Biological rhythms mediate important within-host processes such as metabolism, immunity, and behavior which are often linked to combating disease exposure. For many hosts, exposure to pathogens occurs while feeding. However, the link between feeding rhythms and infection risk is unclear because feeding behavior is tightly coupled with immune and metabolic processes which may decrease susceptibility to infection. Here, we use the Daphnia dentifera–Metschnikowia bicuspidata host–pathogen system to determine how rhythms in feeding rate and immune function mediate infection risk. The host is known to have a nocturnal circadian rhythm in feeding rate, yet we found that they do not exhibit a circadian rhythm in phenoloxidase activity. We found that the time of day when individuals are exposed to pathogens affects the probability of infection with higher infection prevalence at night, indicating that infection risk is driven by a host\u27s circadian rhythm in feeding behavior. These results suggest that the natural circadian rhythm of the host should be considered when addressing epidemiological dynamics

    Multiple generations of antibiotic exposure and isolation influence host fitness and the microbiome in a model zooplankton species

    Get PDF
    Background Chronic antibiotic exposure impacts host health through changes to the microbiome, increasing disease risk and reducing the functional repertoire of community members. The detrimental effects of antibiotic perturbation on microbiome structure and function after one host generation of exposure have been well-studied. However, much less is understood about the multigenerational effects of antibiotic exposure and how the microbiome may recover across host generations. Results In this study, we examined microbiome composition and host fitness across five generations of exposure to a suite of three antibiotics in the model zooplankton host Daphnia magna. By utilizing a split-brood design where half of the offspring from antibiotic-exposed parents were allowed to recover and half were maintained in antibiotics, we aimed to examine recovery and resilience of the microbiome. Unexpectedly, we discovered that experimental isolation of single host individuals across generations also exerted a strong effect on microbiome composition, with composition becoming less diverse over generations regardless of treatment. Simultaneously, Daphnia magna body size and cumulative reproduction increased across generations while survival decreased. Though antibiotics did cause substantial changes to microbiome composition, the microbiome generally became similar to the no antibiotic control treatment within one generation of recovery no matter how many prior generations were spent in antibiotics. Conclusions Contrary to results found in vertebrate systems, Daphnia magna microbiome composition recovers quickly after antibiotic exposure. However, our results suggest that the isolation of individual hosts leads to the stochastic extinction of rare taxa in the microbiome, indicating that these taxa are likely maintained via transmission in host populations rather than intrinsic mechanisms. This may explain the intriguing result that microbiome diversity loss increased host fitness

    Fueling Defense: Effects of Resources on the Ecology and Evolution of Tolerance to Parasite Infection

    Get PDF
    Resource availability is a key environmental constraint affecting the ecology and evolution of species. Resources have strong effects on disease resistance, but they can also affect the other main parasite defense strategy, tolerance. A small but growing number of animal studies are beginning to investigate the effects of resources on tolerance phenotypes. Here, we review how resources affect tolerance strategies across animal taxa ranging from fruit flies to frogs to mice. Surprisingly, resources (quality and quantity) can increase or reduce tolerance, dependent upon the particular host-parasite system. To explore this seeming contradiction, we recast predictions of models of sterility tolerance and mortality tolerance in a resource-dependent context. Doing so reveals that resources can have very different epidemiological and evolutionary effects, depending on what aspects of the tolerance phenotype are affected. Thus, it is critical to consider both sterility and mortality in future empirical studies of how behavioral and environmental resource availability affect tolerance to infection

    Metamorphosis Imposes Variable Constraints on Genome Expansion through Effects on Development

    Get PDF
    Genome size varies ∼100,000-fold across eukaryotes and has long been hypothesized to be influenced by meta- morphosis in animals. Transposable element accumulation has been identified as a major driver of increase, but the nature of constraints limiting the size of genomes has remained unclear, even as traits such as cell size and rate of development co-vary strongly with genome size. Salamanders, which possess diverse metamorphic and non-metamorphic life histories, join the lung- fish in having the largest vertebrate genomes—3 to 40 times that of humans—as well as the largest range of variation in genome size. We tested 13 biologically-inspired hypotheses exploring how the form of metamorphosis imposes varying constraints on genome expansion in a broadly representative phylogeny containing 118 species of salamanders. We show that metamorphosis during which animals undergo the most extensive and synchronous remodeling imposes the most severe constraint against genome expansion, with the severity of constraint decreasing with reduced extent and synchronicity of remodeling. More generally, our work demonstrates the potential for broader interpretation of phylogenetic comparative analysis in exploring the balance of multiple evolutionary pressures shaping phenotypic evolution
    corecore