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2Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, United States, 3 School of Biological
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Resource availability is a key environmental constraint affecting the ecology and evolution

of species. Resources have strong effects on disease resistance, but they can also affect

the other main parasite defense strategy, tolerance. A small but growing number of animal

studies are beginning to investigate the effects of resources on tolerance phenotypes.

Here, we review how resources affect tolerance strategies across animal taxa ranging

from fruit flies to frogs to mice. Surprisingly, resources (quality and quantity) can increase

or reduce tolerance, dependent upon the particular host-parasite system. To explore this

seeming contradiction, we recast predictions of models of sterility tolerance and mortality

tolerance in a resource-dependent context. Doing so reveals that resources can have

very different epidemiological and evolutionary effects, depending on what aspects of the

tolerance phenotype are affected. Thus, it is critical to consider both sterility and mortality

in future empirical studies of how behavioral and environmental resource availability affect

tolerance to infection.

Keywords: tolerance, resistance, resources, foraging, parasite infection, defense strategy

INTRODUCTION

Parasite-infected hosts have two, non-exclusive options for mitigating the fitness costs of parasite
infection. Resistance describes an individual’s ability to reduce its parasite load, while tolerance
is a measure of an individual’s ability to mitigate the fitness costs of parasite infection without
reducing parasite load (1–4). Thus, a more tolerant individual attains higher fitness than others
with the same parasite burden. Tolerance can be quantified as the slope of the relationship between
parasite load and fitness with a less steep slope indicating higher tolerance [(1) but see (5) for a
criticism of this approach]. While the ecological and evolutionary drivers of variation in resistance
have been elucidated by decades of studies, variation in tolerance is less well-understood (6–9). In
plants, where tolerance in response to damage (e.g., herbivory, infection) has long been studied,
the important ecological and evolutionary implications of tolerance have been demonstrated and
provide useful parallels for understanding animal host-parasite interactions (10).

Notably, plant tolerance to herbivory depends on environmental resource availability (11).
The hypothesis that animal tolerance may also be resource-dependent is supported on general
evolutionary grounds; resource availability is a principal selective pressure shaping the evolution
of species, as evidenced by decades of studies on resource partitioning and character displacement
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(12, 13). Moreover, the often strong effects of resources on the
ecology and evolution of disease resistance are well-established
from both theoretical (14, 15) and empirical (16–19) perspectives.
A growing number of animal disease studies suggest that host
tolerance to parasitesmight also be affected by resources [Table 1;
(8)]. However, as we review, existing studies often come to mixed
conclusions as to the effect of resources on tolerance, suggesting
that a theoretical framework is needed to guide hypothesis
development and to draw general conclusions.

To date, there have not been any theoretical studies that
directly address the question of how resources affect host
investment in tolerance to infection (9), where this investment
reduces the fitness cost of infection at some cost to the host.
We distinguish this theory from other work that has examined
how resource-dependent effects on mortality or transmission
affect ecological dynamics (15, 33). However, existing theory
exploring the implications of investment in tolerance for the
ecological and evolutionary dynamics of host-parasite systems
does provide indirect insights into how resources might affect
tolerance investment. Here we review the empirical studies of
resources on tolerance, explore key predictions of existing theory,
and discuss how combining theoretical and empirical approaches
could further understanding of the effects of resources on the
ecology and evolution of tolerance.

DIRECT EFFECTS OF ENVIRONMENTAL
RESOURCES ON TOLERANCE

Resources Can Increase Tolerance
Intuitively, tolerance should require host investment of
potentially limiting resources to compensate for parasite-
induced reductions in host fitness, for example by repairing
tissue damage. Support for that intuitive prediction comes
from both observational and experimental studies showing that
organisms with increased resource consumption have higher
tolerance, and that organisms with reduced ingestion have
compromised tolerance (Table 1). This evidence comes from
studies investigating resource limitation (e.g., low resources vs.
“normal”), studies on resource supplementation (e.g., “normal”
resources vs. high), or studies of two resource levels, but with
no reference to which (if either) is normal for that host in the
wild. Notably, the shape of the reaction norm between resources
and tolerance cannot be determined from only two resource
levels. A such, results from resource limitation studies should
not be extrapolated to high-resource conditions, or vice versa.
Determining the shape of such reaction norms by quantifying
tolerance across a range of resource levels ranging from scarce to
over-abundant is a key area for future research.

Numerous observational studies indicate that increasing
resource consumption can be a behavioral mechanism of
tolerance (21–23). For example, Knutie et al. (23) used a
parasite removal experiment to determine that parasitized
Galapagos mockingbird nestlings beg more for food and receive
increased provisioning from their parents in comparison to
their non-parasitized counterparts. The additional resources they
received allowed parasitized nestlings to compensate for some

of the costs of infection; fledging success was not affected by
parasite load. Notably, in the same experiments, the medium
ground finch did not increase provisioning to infected nestlings,
which resulted in a negative relationship between parasite
load and fledging success. Thus, the resource supplementation
behavior of mockingbirds makes them more tolerant than the
medium ground finch (23). Interspecific variation in tolerance
to a generalist parasite could alter transmission dynamics
and competition between species, as the tolerant species will
support a higher parasite population, fueling spillover infections
that drive down the population size of the intolerant host,
analogous to the P∗ concept in apparent competition theory
(34). Thus, interspecific variation in tolerance has the potential
to affect the ecology and evolution of host communities.
Similar forms of “parental compensation” by increasing resource
provisioning to parasite-infected nestlings has been observed in
other focal bird species (21, 22). Interestingly, although initially
broadly accepted, the parallel theory for plant-herbivore-resource
interactions, termed the “compensatory continuum hypothesis,”
a metaanalysis found little support for the theory (11, 35). For
host-parasite interactions, further studies and expanding beyond
avian systems may prove useful in determining whether, how
commonly, and under what conditions resources and foraging
behavior can be used to fuel tolerance.

Moreover, severely malnourished hosts often have diminished
investment in both resistance and tolerance defenses (16–19).
Resource limitation thus has the potential to result in higher
parasite loads and higher fitness costs per parasite. Indeed,
Cuban tree frogs show both reduced resistance and tolerance
to infection with a parasitic nematode when food abundance
is limited (25). If hosts are less able to either resist or tolerate
infection, the resulting effects on parasite transmission and host
population dynamics may be complex. Individual hosts will have
higher load due to reduced resistance, but lower survival and/or
reproduction due to reduced tolerance. At the population level,
these effects could translate to increased transmission due to
higher shedding rates or reduced transmission due to parasite-
induced mortality, lower population density, and reduced birth
rate of new susceptibles (15).

Even when tolerance responds positively to increasing
resource quality and quantity, resistance may not respond
similarly. For example, when infected with a bacterial pathogen,
the crustaceanDaphnia magna has increased survival (i.e., higher
tolerance) when given high food levels compared to low food
levels, despite having higher parasite loads (i.e., lower resistance)
at high food levels (32). Likewise, a low-protein diet has been
shown to increase resistance but reduce the ability of lab mice
to tolerate gastrointestinal nematode infection, when tolerance is
measured as a function of weight gain (20) and intestinal barrier
function (7). However, the effect of resources on tolerance to
nematode infection can vary with host genotype (7); there was
no effect of diet on tolerance to infection in a strain of lab mice
that better maintained their intestinal barrier during infection.
Conversely, genotype did not affect the morality tolerance of
bacteria-infected D. magna (32). Alternatively, resistance may
respond positively to resource quality while tolerance does not;
food-limited crickets show reduced resistance but equal tolerance
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TABLE 1 | Studies of the effects of resources on tolerance show varied outcomes (red, resources reduce tolerance; yellow, resources have no effect on tolerance; green,

resources increase tolerance; white, resources affect tolerance).

Host Parasite Study design Effect of resources on

tolerance

Tolerance metric Source

BALB/c and CBA lab mice

(Mus musculus)

Heligmosomoides polygyrus

(nematode)

Resource quality (low vs.

high-protein diet) crossed

with infection status

low quality resources

reduce tolerance, but only

for BALB/c mice

Fitness proxies (weight gain,

intestinal permeability)

(7)

BALB/c lab mice (Mus

musculus)

Heligmosomoides polygyrus

(nematode)

Resource quality (low vs.

high-protein diet) crossed

with single and co-infection

status

No effect of resource quality

on tolerance

Fitness proxy (weight gain) (20)

BALB/c lab mice (Mus

musculus)

Nippostrongylus brasiliensis

(nematode)

Resource quality (low vs.

high-protein diet) crossed

with single and co-infection

status

Low quality resources

reduce tolerance

Fitness proxy (weight gain) (20)

Blue tits (Parus caeruleus) Ceratophyllus gallinae (flea) Resource acquisition

behavior–Flea removal and

addition to nests

Behavioral resource

supplementation facilitated

tolerance

Sterility (offspring quantity

and quality)

(21)

Great tits (Parus major) Ceratophyllus gallinae (flea) Resource acquisition

behavior–Flea removal and

addition to nests

Behavioral resource

supplementation facilitated

tolerance

Sterility (offspring number

and condition, but reduced

body size)

(22)

Galápagos mockingbird

(Mimus parvulus)

Philornis downsi (invasive

nest fly)

Resource acquisition

behavior–Fly removal from

nests

Behavioral resource

supplementation facilitated

tolerance

Sterility (offspring quantity

and quality)

(23)

medium ground finches

(Geospiza fortis)

Philornis downsi (invasive

nest fly)

Resource acquisition

behavior–Fly removal from

nests

Without behavioral resource

supplementation, tolerance

was lower

Sterility (offspring quantity

and quality)

(23)

Domestic canaries (Serinus

canaria)

Plasmodium relictum (avian

malaria)

Resource supplementation

crossed with infection

Resource supplementation

reduces tolerance

Fitness proxy (hematocrit) (24)

Cuban tree frog (Osteopilus

septentrionalis)

Aplectana sp. (nematode) Resource quantity (#

crickets) crossed with

infection status

Low quantity of resources

reduces tolerance

Fitness proxy (weight

change)

(25)

Monarch butterflies (Danaus

plexippus)

Ophryocystis elektroscirrha

(protozoa)

Resource variation (12

milkweed food plant

species) crossed with

infection status

Tolerance varies by

milkweed species and

increases with cardenolide

conc.

Mortality (longevity) (26)

Texas field crickets (Gryllus

texensis)

Serratia marcescens

(bacteria)

Resource limitation crossed

with infection and wounding

No effect of resource

limitation on tolerance

Sterility (egg output) and

immune mechanism

(glutathione)

(27)

Fruit fliy (Drosophila

melanogaster)

Providencia rettgeri

(bacteria)

Resource quality (low vs.

high-sugar diet) crossed

with infection status and

genotype

Lower mortality tolerance on

high-sugar diet, but no

effect on sterility tolerance

Sterility (# adult offspring

produced) and mortality

(survival)

(28)

Fruit fliy (Drosophila

melanogaster)

Salmonella typhimurim

(bacteria)

Resource quantity (dilute

media) crossed with

infection status

Resource limitation

increases tolerance

Mortality (longevity) (29)

Fruit fliy (Drosophila

melanogaster)

Lysteria monocytogenes

(bacteria)

Resource quantity (dilute

media) crossed with

infection status

No effect of resource

limitation on tolerance

Mortality (longevity) (29)

Fruit fliy (Drosophila

melanogaster)

Escherichia coli (bacteria) Resource quality (low vs.

high-protein diet) crossed

with infection status

Resource limitation

increases tolerance, but

only during early infection

Sterility (# adult offspring

produced)

(30)

Fruit fliy (Drosophila

melanogaster)

Lactococcus lactis (bacteria) Resource quality (low vs.

high-protein diet) crossed

with infection status

No effect of resource quality

on tolerance

Sterility (# adult offspring

produced)

(30)

Fruit fliy (Drosophila

melanogaster)

Lactococcus lactis (bacteria) Resource quality (low vs.

high-protein diet) crossed

with infection status

No effect of resource quality

on tolerance

Sterility (# adult offspring

produced)

(31)

Daphnia magna Pastura ramosea

(bacteria)

Resource quantity (low vs.

high) crossed with infection

status and genotype

Low quantity of resources

reduces tolerance

Mortality (longevity) (32)
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to ad libitum fed individuals (27). Taken together, these results
indicate that understanding the population-level consequences
of resource limitation for disease dynamics will likely require
considering the complex interactions among genotype, tolerance,
and resistance.

Resources Can Reduce Tolerance
Reduced resource ingestion is a ubiquitous response to infection
across the animal kingdom (36). While initially thought to
be a maladaptive side-effect of infection, studies increasingly
suggest that illness-induced anorexia may carry benefits for
the host (37, 38). For example, fruit flies on a limited (dilute)
diet are more tolerant of Salmonella typhimurim infections,
exhibiting increased fecundity relative to parasite load compared
to infected individuals on a standard diet (29). Notably, this
beneficial effect of resource limitation on tolerance is infection-
specific; diet restriction did not affect tolerance to another
bacteria, Listeria monocytogenes (29). Similarly, a low-protein
diet increases sterility tolerance to Escherichia coli infection, but
not Lactococcus lactis infection in fruit flies (30). A low-sugar
diet also increases fruit fly tolerance with respect to mortality
due to the bacterial pathogen Providencia rettgeri. Interestingly,
dietary sugar content does not affect fruit fly fecundity relative
to parasite load (i.e., sterility tolerance) (28). Tolerance benefits
of a low resource diet are not limited to fruit fly-bacteria
pathogen interactions; canaries infected with avian malaria
(Plasmodium relictum) exhibit higher hematocrit relative to
parasite load when on a standard rather than supplemented diet
(24). Nonetheless, most studies of infection-induced anorexia
have primarily focused on it as a parasite avoidance strategy or
a side-effect of resistance responses, leaving anorexia-tolerance
relationship a topic warranting further empirical and theoretical
attention (39).

THEORETICAL PREDICTIONS FOR
EFFECTS OF RESOURCES ON
TOLERANCE

Modeling the Evolution of Tolerance
Given the limited number of empirical studies on the effects
of resources on tolerance to infection, theory may help
us understand the implications of these studies and guide
hypotheses and design of future empirical research. No prior
studies have directly modeled the effects of resources on host
investment in tolerance, but existing theory regarding the
ecological and evolutionary implications of tolerance investment
can be adapted to provide useful, although indirect, insights. In
the Appendix in Supplementary Material, we extend existing
theory to explicitly account for resources. Analysis of this
model shows how the shapes of the relationships between
tolerance investment, resources, and host life history can drive
the evolutionary response of tolerance to resources.

Here, however, we focus on reviewing existing theory. From
a theoretical perspective, tolerance is modeled by assuming that
some model parameters (such as virulence) are under the control
of both the parasite and the host (40). We will use the following

simple model to illustrate many of the conclusions of theory
(41, 42):

dS

dt
= a

(

S+ fI
)

− qN
(

S+ fI
)

−mS− βSI + γ I

dI

dt
= βSI − (α +m+ γ ) I

In this model, a is the intrinsic birth rate of the host, f is
the reduction in intrinsic birth rate due to infection, q is the
host susceptibility to crowding, m is the background mortality
rate of the host, β is the transmission rate, α is the virulence
(infection-induced mortality rate), and γ is the recovery rate.
In this simple model, infection may reduce host fitness by
reducing host birth rate (f ) or increasingmortality rate (α). These
two parameters, therefore, depend on both host-specific traits
(parameters) and parasite-specific traits. That is, f and α are
both functions, f (hf , pf ) and α(hα , pα), where hi and pi are host
and parasite traits, respectively. In a host-centric analysis, pf and
pα are assumed to be constant. Finally, investment in tolerance
by the host (increasing hf or hα) must come at some cost to
other aspects of host fitness (otherwise, infinite investment will
always be favored). Typically, theory assumes that investment
in mortality tolerance (hα) reduces intrinsic birth rate (a is a
decreasing function of hα , a(hα)), whereas investment in sterility
tolerance (hr) increases background mortality rate (m is an
increasing function of hr , m(hr)). Importantly, sterility tolerance
has no effect on parasite fitness, whereas mortality tolerance
increases parasite fitness (43, 44). This distinction has important
consequences for both ecological and evolutionary dynamics.

This sets up the basic model for studying the ecological and
evolutionary consequences of tolerance. There is also a significant
body of research studying “resistance” strategies of host defense
(43), such as avoidance (host traits affecting β) or recovery
(host traits affecting γ ). In these models, there will be trade-offs
between host investment in resistance and host intrinsic birth
rate.

There are several models that explicitly consider how
investment in resistance and tolerance change simultaneously
(40, 45) including models that assume a trade-off in investment
(44). We will also discuss models that consider the coevolution
of hosts and parasites. In these models, parasite traits also vary
and are involved in parasite fitness trade-offs (e.g., increasing pα

increases both infection-induced mortality α and transmission
rate β).

Existing theory typically studies the evolution of tolerance
using evolutionary invasion analysis (46). This framework
conceptualizes evolution as a series of mutation events, where
“mutant” hosts with new trait values attempt to invade
a population of “resident” hosts at their epidemiological
equilibrium. If the mutant can invade, it does and the trait
composition of the population changes. Ultimately, the theory is
seeking to find evolutionarily stable traits; such a trait is a fitness
maxima and a host population with that trait cannot be invaded.
Other interesting outcomes are possible, such as evolutionary
bistability (the existence of multiple evolutionarily stable trait
values, only one of which will be attained) and evolutionary

Frontiers in Immunology | www.frontiersin.org 4 October 2018 | Volume 9 | Article 2453

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Budischak and Cressler Resources Affect Tolerance to Parasite Infection

branching (evolution of polymorphism in trait values) (46).
However, though these predictions tend to be evolutionary, we
can also use them to infer how tolerance will change plastically
in response to host, parasite, or environmental factors, such as
resources. Perfect adaptive plasticity should adjust investment
in tolerance in response to changes in the environment such
that the population remains at a fitness maximum. Thus, we will
assume that predictions for the evolution of tolerance can guide
predictions about plastic changes in tolerance as well.

Implications of Mortality vs. Sterility
Tolerance
Before delving into specific predictions of theory, and their
potential implications for the effect of resources on tolerance,
there is an important distinction to be made between mortality
tolerance and sterility tolerance. Studies of mortality tolerance
(42, 44, 47–54) vastly outnumber studies of sterility tolerance (40,
44, 55, 56). Mortality tolerance will increase parasite fitness by
increasing the host lifespan while infected. As such, investment
in tolerance increases parasite fitness, thereby increasing parasite
prevalence and hence, the selection for investment in tolerance,
driving tolerance to fixation via positive frequency dependence
(44, 49). This is in contrast to defense mechanisms that directly
reduce parasite fitness: investment in such resistancemechanisms
reduces parasite fitness, thereby reducing infection prevalence
and, hence, selection for investment in resistance. This negative
frequency dependence can lead to other evolutionary outcomes,
such as polymorphism in resistance investment (44, 56). Such
polymorphism is, in general, impossible in models of mortality
tolerance (54). Sterility tolerance, however, can generate such
negative frequency dependence because parasite fitness is
reduced via the trade-off between sterility tolerance and host
background mortality rate. As such, polymorphism is possible,
meaning that hosts with both high and low investment in
tolerance can coexist in both ecological and evolutionary time.

Effects of Resources on Tolerance
There are two ways to that resources could modify host
investment in tolerance. The most direct is if tolerance is itself
resource-dependent, for example if increasing resources increases
tolerance by making it “cheaper” to invest in tolerance. Existing
theory is insufficient to guide predictions here. We show in the
Appendix, using the simple model above, that the response of
tolerance investment to increased resources is highly sensitive to
the shapes of the functions relating resources to tolerance, and
tolerance to host fitness (57).

On the other hand, resources can also alter aspects of host
physiology or the environment, including by directly changing
virulence. These changes will indirectly modify the optimal
investment in tolerance. As existing theory typically explores
how tolerance changes across gradients of epidemiologically
relevant factors, we can use it to understand these indirect
effects of resources on tolerance. In particular, we will consider
the influence of transmission rate, host lifespan, and host
reproduction on tolerance investment. For all of these, theory
makes clear predictions and the influence of resources can be
inferred straightforwardly.

One of the most commonly explored gradients is transmission
rate, β . A universal finding (47, 51, 53, 56, 58) is that,
as transmission rate increases, so does investment in either
sterility or mortality tolerance. This increased investment in
tolerance occurs even as investment in resistance decreases
across this gradient (40, 45). These results are entirely intuitive:
as transmission rate increases, hosts spend more of their life
infected, and thus compensating for the deleterious effects of
infection on fitness becomes more important. Resources are
likely to affect the transmission rate of many parasites. If
parasites are encountered during foraging, either incidentally,
as is the case for many parasites in aquatic systems (59), or via
intentional ingestion, as is the case for trophically transmitted
parasites (60), then transmission rate will be directly related
to host foraging rate and thus will be resource-dependent. If
increasing resources causes hosts to forage more (or less), theory
would predict that investment in tolerance should increase (or
decrease). Alternatively, if abundant resources promote host
aggregation or reduced host movement, they can also increase
transmission via higher contact rates between individuals and/or
infected environments (61–63), and hence, increase investment
in tolerance.

Increasing host lifespan (either by decreasing the background
mortality rate, m, or parasite virulence, v) is also predicted to
increase investment in mortality tolerance (40, 45, 47, 50–53).
For sterility tolerance, the results are more complicated, indicting
either a unimodal or strictly increasing response of tolerance to
host lifespan, depending on the virulence of the parasite (56).
Given that increasing resources is likely to reduce the mortality
rate from other factors by improving host body condition (64,
65), increasing resources will often increase the investment in
tolerance.

The consequences of increasing fecundity on tolerance
investment has received only limited theoretical exploration
(66). That study varied the birth rate of infected hosts relative
to uninfected hosts, f , to study how investment in mortality
tolerance and other defense strategies varied. They showed
that, as the birth rate of infected hosts increased, so did the
investment in tolerance, even when increased investment in
tolerance compromised investment in resistance mechanisms
(42). Again, increased resources is likely to increase investment in
tolerance, as infected hosts are more likely to reproduce at near-
normal levels when resources are abundant (67). As we show in
theAppendix in Supplementary Material, a model incorporating
an explicit effect of resources on birth rate would also make the
same prediction: if increasing resources increases birth rate, that
will also increase investment in tolerance.

The importance of understanding how tolerance will respond
to increased resources is magnified by the fact that the evolution
of tolerance is often very sensitive to the initial level of tolerance
in the population. For example, Miller et al. (53) found that, at
an intermediate host lifespan, the host can evolve toward either
high tolerance or complete intolerance, depending on the initial
level of tolerance in the population. Such bistability between
high tolerance and low tolerance strategies is actually a very
common finding in studies of tolerance (40, 48, 51, 56), indicating
that it is fairly general across a wide range of epidemiological
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conditions. The implication of such bistability for predicting
how resources affect tolerance investment is therefore two-
fold. First, if resources are abundant, they may increase the
likelihood that tolerance “wins out” over intolerance, as in
models showing contingent competition between tolerant and
intolerant host populations (51). Second, evolutionary bistability
is often characterized by hysteresis, where small changes in the
environment can trigger massive changes in the system state.
Thus, were a system to start in a bistable region of parameter
space where the fitness-maximizing investment in tolerance was
very low, an increase in resources could cause the system to
pass into a region where the fitness-maximizing investment in
tolerance was very high, leading to a sudden jump in investment.
Because of the hysteresis, however, a reduction in resources
wouldn’t necessarily lead to a sudden drop in investment (53).

MERGING EMPIRICAL AND THEORETICAL
INFERENCES

As we discuss below, existing theory has three major implications
for empirical studies of tolerance. Existing empirical studies have
focused on how resources can directly affect host tolerance. Our
review of theory suggests that resources may also indirectly affect
tolerance by changing the ecological context of host-parasite
interactions (e.g., by altering contact rates and, hence, the benefits
of investment in tolerance). Human activities are altering the
quality, quantity, and distribution of resources available to hosts
in the environment (68, 69). This ubiquitous feeding of wildlife
by humans, whether intentional or incidental, has a multitude
of consequences for wildlife disease (9, 15, 62). The cross-scale
effects of anthropogenic resource subsidies are well-described
in a recent theme issue of Philosophical Transactions of the
Royal Society B (33), but the effects of resources on tolerance
(in contrast to effects on resistance) are only discussed in one
review (70) and noted as warranting further research in another
(9). In particular, a number of studies have documented how
anthropogenic resources can promote host aggregation and limit
host movement in ways that will increase transmission, and
theoretically, investment in tolerance (61–63). Clearly, the study
of resource provisioning on other aspects of infection defense
(71) are ahead of research on tolerance. Yet, changes in tolerance
in response to anthropogenic resource supplementation could
have important implications for disease dynamics.

The prediction that mortality tolerance and sterility tolerance
can have very different epidemiological and evolutionary
trajectories indicates that a critical empirical consideration in
studies of tolerance is to carefully diagnose the benefits and
costs of tolerance. This is particularly relevant for understanding
the influence of resources, as food intake will influence all
aspects of an organism’s life history, including traits involved in
reproduction and survival. Thus, changes in resources may be
very likely to influence both mortality and sterility tolerance and,
whenever possible, empirical studies should try to quantify both.

In some cases, the measure of tolerance can be cleanly related
to either sterility tolerance [e.g., parental provisioning in birds
(21–23)] or mortality tolerance [e.g., lifespan of fruit flies (29)],

but in many cases, host tolerance is measured via a fitness proxy
like body weight that is more challenging to relate to theory
(1, 44). There is also the unique issue that there is no universally
agreed-upon way to quantify tolerance. A common approach is
to quantify some host trait across varying parasite loads, with
tolerance quantified as the slope of a regression of trait against
load (1, 2), an approach that has attracted criticism (5). However,
this means that empirical measures of tolerance have units of
things like “body weight per parasite.” Theory, on the other, tends
to ignore parasite load, assuming all hosts have equal loads, and
measure tolerance as a scalar multiplier on some other trait. Of
course, this is a generic problem when trying to relate theory
to data, as theoreticians often do not consider how traits are
actually measured empirically, and empiricists often do not (or
cannot) measure the parameters of a theoretical model. One
possible middle ground would be for theory to make more use
of models that can account for load, such as classic macroparasite
models (72), or nested models (73), and for empiricists to report
known relationships between fitness proxies and reproduction
and mortality (e.g., if tolerance is measured by body weight, what
is the relationship between body weight and reproduction and
mortality?).

A further general implication of theory is that tolerance
may be difficult to measure (50, 52). For example, if hosts and
parasites simultaneously adjust their investment in mortality
tolerance (hα) and virulence (pα), either coevolutionarily or
plastically, infection-induced mortality α may remain constant
across environments. This is because increased host investment
in mortality tolerance will be countered by increased parasite
investment in virulence traits. As hosts increase investment
in tolerance, infection-induced mortality decreases; this allows
parasites to increase their investment in virulence traits (which
typically carry a benefit of increasing transmission, e.g., α′

(

pα

)

>

0 and β ′
(

pα

)

> 0) without actually increasing infection-induced
mortality. Resources may be quite likely to provoke a similar
effect; for example, if increasing resources improves investment
in mortality tolerance but simultaneously increases parasite
abundance within the host (14), the overall change in observed
mortality may be negligible. Thus, quantifying or experimentally
manipulating parasite abundance will be central to empirically
testing the effects of resources on tolerance. Additionally, new
tools such as immune gene expression markers of tolerance (74–
76) may offer ways to quantify investment in tolerance that are
independent of parasite virulence. Finally, a examining tolerance
across a range of resource levels ranging from scarce, to normal,
to super-abundant will provide much needed insight into the
resource-tolerance relationship.

However, it is clear that more theory is needed as well. As
our empirical review indicates, increasing resources can either
increase or decrease tolerance; our theory review, on the other
hand, seems to suggest that the effects of resources on host life
history and environment will tend to lead to increasing resources
increasing tolerance. The model developed in the Appendix

in Supplementary Material is much more nuanced, indicating
that this prediction is not nearly so straightforward, especially if
resources can directly affect tolerance. However, the model also
indicates that predictions will be highly sensitive to the shapes
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of the functions relating host life history to both tolerance and
resources. We hope that the model laid out in the Appendix in
Supplementary Material will provide researchers with a jumping-
off point for future theoretical work.

As recognition of the importance and frequency of tolerance
as a defense strategy grows, a critical next step is to
understand variation in tolerance. The studies reviewed here
show that resources can affect intra-individual, intraspecific,
and interspecific variation in tolerance. They also reveal both
the taxa-specific investigations of tolerance (e.g., provisioning
behavior in birds, anorexia in flies) and cross-taxa trends that
supersede them. For example, in both birds and fruit flies, a
low resource diet can improve tolerance (24, 29, 30). Adding
resources into existing evolutionarymodels supports the context-
dependent empirical results and provides mechanisms and
hypotheses warranting further empirical study. Moreover, these
models illustrate the need to quantify tolerance in relation
to both mortality and sterility to make accurate ecological
and evolutionary predictions. Indeed, now that the effects of

resources on tolerance have broadly demonstrated, investigating
the ecological and evolutionary consequences of resource-
dependent tolerance is a critical next step.
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Appendix 

We take an adaptive dynamics approach to ask how the evolutionarily stable investment in tolerance 
changes with resources. Our model is an extension of the simple model introduced in the manuscript 
(Best et al. 2017). We consider two host populations, a resident (𝑆, 𝐼) and mutant (𝑆! , 𝐼!), that are 
characterized by traits ℎ and ℎ!, respectively. Here we assume increasing ℎ represents an increased 
investment in tolerance that lowers virulence. For an evolutionarily stable tolerance strategy to exist, it is 
necessary for this investment to carry some cost to the host (i.e., for there to be a trade-off). In general, 
this could be accomplished by making intrinsic birth rate 𝑎, sensitivity to crowding 𝑞, or background 
mortality rate 𝑚, a function of ℎ. Here we assume that intrinsic birth rate 𝑎 is a decreasing function of ℎ.  

To study how investment in tolerance changes with resources, we need to consider how resources will 
enter the model. There are two possibilities. One could explicitly model resource dynamics, allowing 
resources to be depleted by host ingestion and replenished either by growth or supplementation. This 
would allow for dynamical feedbacks between host strategy and resources that could potentially drive 
complex evolutionary dynamics (e.g., Hite and Cressler 2018). More simply, one could treat resources as 
a parameter, 𝑅, of the model. This simpler approach is the one we take here. As noted in the main text, 
resources can either directly affect tolerance investment, or they can indirectly affect tolerance investment 
by affecting other processes in the model.  

Resources have a direct effect when tolerance is an explicit function of resources. In this case, we need to 
define a tolerance function 𝜏(ℎ,𝑅) that is a function of both tolerance investment, h, and resources, R. We 
assume that !"

!!
> 0, so that increasing the investment in tolerance will increase tolerance. If increasing 

resources increase tolerance, the !"
!"
> 0 as well. The consequence of this resource dependence would be 

that the same value of 𝜏 could be attained at a lower ℎ in a high resource environment. 

Resources have an indirect effect on tolerance through their effects on other processes in the model. For 
example, increasing resources is likely to increase the intrinsic birth rate and decrease both the crowding 
effect, 𝑞, and background mortality rate, 𝑚. In our analysis below, we will assume that resources affect 
intrinsic birth rate, 𝑎. Taking into account the preceding discussion of the direct effects of resources on 
tolerance, we would write intrinsic birth rate as 𝑎 𝜏(ℎ,𝑅 ,𝑅). Although unwieldy, this captures the direct 
effect of resources on tolerance, 𝜏, the effect of tolerance on birth rate (!"

!"
< 0), the effect of tolerance 

investment on birth rate (!"
!!
= !"

!"
!"
!!

< 0), and the direct effect of resources on birth rate, separate 

from resources’ effects on tolerance (!"
!"
> 0). The full effect of resources on birth rate depends on the 

sum of these effects: !"
!"
= !"

!"
+ !"

!"
!"
!"

. 

Resources may also modify virulence. This effect could be positive, i.e., increasing resources increases 
virulence, if, for example, virulence depends on pathogen load, and pathogen load is an increasing 
function of resources (Cressler et al. 2014). It could also be negative, i.e., increasing resources decreases 
virulence, if, for example, increasing resources reduced the expression of pathogenic phenotypes (e.g., 
siderophores, Dale et al. 2004). In either case, resources are having a direct effect on tolerance. For 
example, if increasing resources reduces virulence, then a lower investment in tolerance is required in a 
high resource environment to achieve the same virulence We write virulence as 𝛼 𝜏 ℎ,𝑅 ,𝑅 . The effect 
of tolerance on virulence is given by !"

!"
< 0; the effect of tolerance investment on virulence is !"

!!
=



!"
!"

!"
!!

< 0; and the direct effect of resources on virulence is !"
!"
. The full effect of resources on 

virulence depends on the sum !"
!"
= !"

!"
+ !"

!"
!"
!"

. 

The full model is: 

𝑑𝑆
𝑑𝑡

= 𝑎(𝜏 ℎ,𝑅 ,𝑅) 𝑆 + 𝑓𝐼 − 𝑞 𝑆 + 𝑓𝐼 (𝑆 + 𝐼 + 𝑆! + 𝐼!) −𝑚𝑆 − 𝛽𝑆(𝐼 + 𝐼!) + 𝛾𝐼 
𝑑𝐼
𝑑𝑡
= 𝛽𝑆(𝐼 + 𝐼!) − 𝛼 𝜏 ℎ,𝑅 ,𝑅 +𝑚 + 𝛾 𝐼 

𝑑𝑆!
𝑑𝑡

= 𝑎 𝜏 ℎ! ,𝑅 ,𝑅 𝑆! + 𝑓𝐼! − 𝑞 𝑆! + 𝑓𝐼! (𝑆 + 𝐼 + 𝑆! + 𝐼!) −𝑚𝑆! − 𝛽𝑆(𝐼 + 𝐼!) + 𝛾𝐼! 
𝑑𝐼
𝑑𝑡
= 𝛽𝑆(𝐼 + 𝐼!) − 𝛼 𝜏 ℎ! ,𝑅 ,𝑅 +𝑚 + 𝛾 𝐼 

(1) 

The analysis of this full model is unwieldy, to say the least, but we will illustrate how such an analysis 
would proceed by considering a slightly simplified model. In particular, we will assume that resources 
have no direct effects on tolerance, but can affect both intrinsic birth rate and virulence. In this case, we 
can write intrinsic birth rate as 𝑎(ℎ,𝑅), with !"

!!
< 0 and !"

!"
> 0. We can write virulence as 𝛼(ℎ,𝑅), with 

!"
!!
< 0 and !"

!"
 left unspecified for generality. 

Following standard practice for an adaptive dynamics analysis, we assume that the resident host is at its 
ecological equilibrium and ask whether the mutant host can invade from rarity. Mathematically, whether 
the mutant can invade is determined by the eigenvalues of the Jacobian matrix of partial derivatives, 
evaluated at the equilibrium (𝑆∗, 𝐼∗, 0, 0). That 4x4 Jacobian will have a block triangular structure: the 
upper-left 2x2 submatrix determines the stability of the resident-only system (so its eigenvalues will be 
negative) and the lower-left submatrix is 0, so the eigenvalues of the lower-right submatrix will determine 
whether the mutant can invade. This matrix is: 

𝐽 = 𝑎 ℎ! ,𝑅 − 𝑞 𝑆∗ + 𝐼∗ −𝑚 − 𝛽𝑄∗ 𝑓 𝑎 ℎ! ,𝑅 − 𝑞 𝑆∗ + 𝐼∗ + 𝛾
𝛽𝑄∗ − 𝛼 ℎ! ,𝑅 +𝑚 + 𝛾

 (2) 

 

Applying the Next Generation Matrix theorem (Hurford et al. 2010), the mutant will be able to invade if 

𝑟! = 𝛼 ℎ! ,𝑅 − 𝑞 𝑆∗ + 𝑄∗ −𝑚 − 𝛽𝑄∗ 𝛼 ℎ! ,𝑅 +𝑚 + 𝛾
+ 𝛽𝑄∗ 𝑓 𝑎 ℎ! ,𝑅 − 𝑞 𝑆∗ + 𝐼∗ + 𝛾 > 0. (3) 

 

Possible endpoints of evolution occur at tolerance investment strategies ℎ! = ℎ = ℎ∗  that cause the 
fitness gradient !!!

!!! !!!!!!∗
 to vanish (keeping in mind that all derivatives are evaluated at ℎ∗),  

𝜕𝑟!
𝜕ℎ! !!!!!!∗

= 𝛼 ℎ∗,𝑅 +𝑚 + 𝛾 + 𝑓𝛽𝑄∗
𝜕𝑎
𝜕ℎ

+ 𝛼 ℎ∗,𝑅 − 𝑞 𝑆∗ + 𝑄∗ −𝑚 − 𝛽𝑄∗
𝜕𝛼
𝜕ℎ

= 0. (4) 

Since both !"
!!
< 0 and !"

!!
< 0, for an ES to exist it must be the case that 𝛼 ℎ∗,𝑅 − 𝑞 𝑆∗ + 𝑄∗ −𝑚 −

𝛽𝑄∗ < 0. 



ℎ∗ will be evolutionarily stable (i.e., a fitness maximum) if  !
!!!
!!!! !!!!∗

< 0, where 

𝜕!𝑟!
𝜕ℎ!! !!!!!!∗

= 2
𝜕𝑎
𝜕ℎ

𝜕𝛼
𝜕ℎ

+ 𝛼 ℎ∗,𝑅 +𝑚 + 𝛾 + 𝑓𝛽𝑄∗
𝜕!𝑎
𝜕ℎ!

+ 𝛼 ℎ∗,𝑅 − 𝑞 𝑆∗ + 𝑄∗ −𝑚 − 𝛽𝑄∗
𝜕!𝛼
𝜕ℎ!  

(5) 

 

Since increased investment in tolerance reduces both virulence and intrinsic birth rate !"
!!
< 0, !"

!!
< 0  

and 𝛼 ℎ∗,𝑅 − 𝑞 𝑆∗ + 𝑄∗ −𝑚 − 𝛽𝑄∗ < 0, the second partial derivatives could be almost any sign, 
implying that the shape of the functional relationship between birth rate, virulence, and tolerance is fairly 

unconstrained. Keeping in mind that !
!!
!!!

= 0 implies that birth rate decreases linearly with tolerance, 
!!!
!!!

< 0 implies that birth rate decreases at an accelerating rate with tolerance, and !
!!
!!!

> 0 implies that 
birth decreases at a decelerating rate with tolerance, there are a few constraints and conclusions that can 
be drawn. 

1. Either virulence or birth rate must be a nonlinear function of tolerance, otherwise evolutionary 
stability is impossible.  

2. If virulence is a linear function of tolerance, then birth rate must decrease at an accelerating rate 
with tolerance. 

3. If birth rate is a linear function of tolerance, then virulence must decrease at a decelerating rate 
with tolerance. 

Evolutionary stability is most likely if birth rate decreases at an accelerating rate and virulence decreases 
at a decelerating rate: in other words, if the costs of tolerance increase faster than the benefits. Assume 
that we are only interested in evolutionarily stable (ES) tolerance investments (ℎ! = ℎ = ℎ∗). It is clear 
that the value of any ES will implicitly depend on resources, R, in that altering R will alter ℎ∗. We can 
write ℎ∗ as a function of 𝑅 and implicitly differentiate the ES condition with respect to R to try to gain 
insight into how changing 𝑅 will affect ES tolerance. That gives us an expression containing the 
derivative ℎ∗′(𝑅). Solving for ℎ∗′(𝑅), we arrive at an expression whose sign tells how the ES investment 
in tolerance changes with resources (keeping in mind that all derivatives are evaluated at ℎ = ℎ∗): 

ℎ∗′(𝑅)

=
− 𝜕𝑎𝜕ℎ

𝜕𝛼
𝜕ℎ −

𝜕𝑎
𝜕𝑅

𝜕𝛼
𝜕𝑅 − 𝛼 ℎ∗,𝑅 +𝑚 + 𝛾 + 𝑓𝛽𝑄∗ 𝜕!𝑎

𝜕ℎ𝜕𝑅 − 𝛼 ℎ∗,𝑅 − 𝑞 𝑆∗ + 𝑄∗ −𝑚 − 𝛽𝑄∗ 𝜕!𝛼
𝜕ℎ𝜕𝑅

2 𝜕𝑎𝜕ℎ
𝜕𝛼
𝜕ℎ + 𝛼 ℎ∗,𝑅 +𝑚 + 𝛾 + 𝑓𝛽𝑄∗ 𝜕!𝑎

𝜕ℎ! + 𝛼 ℎ∗,𝑅 − 𝑞 𝑆∗ + 𝑄∗ −𝑚 − 𝛽𝑄∗ 𝜕!𝛼
𝜕ℎ! .

 

Notice that the denominator of this expression is the evolutionary stability condition, meaning that we 
know that it will be negative. !"

!!
!"
!!

 will be positive, as increasing investment in tolerance decreases both 

intrinsic birth rate and virulence; !"
!"

!"
!"

 could be negative (if increasing resources increases virulence), 
positive (if increasing resources decreases virulence), or zero (if resources have no direct effect on 
virulence), as increasing resources will increase birth rate. The mixed partial derivatives have 
indeterminate signs. This suggests that, in general, it is possible to choose functional forms such that 
tolerance investment can increase or decrease with resources. 



However, we can consider one case more carefully: assume that resources have no effect on virulence. 

Then !"
!"
= !!!

!!!"
= 0; if − !"

!!
!"
!!
− 𝛼 ℎ∗,𝑅 +𝑚 + 𝛾 + 𝑓𝛽𝑄∗ !!!

!!!"
< 0, then increasing resources 

will increase tolerance (because the denominator above is negative). This is guaranteed if !
!!

!!!"
> 0.  

As an example of the potential utility of this modeling framework, we can use it to compare with a 
prediction made in the main text. In particular, using the function giving the effect of tolerance investment 
on intrinsic birth rate in Best et al. (2017), and assuming a linear effect of resources on birth (not included 

in the original paper), we find that !
!!

!!!!
> 0. As expected, resources increasing birth rate would also lead 

to an increase in tolerance, as predicted by Best et al. (2017). 
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