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Abstract

Stochastic processes such as genetic drift may hinder adaptation, but the effect

of such stochasticity on evolution via its effect on ecological dynamics is poorly

understood. Here we evaluate patterns of adaptation in a population subject to

variation in demographic stochasticity. We show that stochasticity can alter

population dynamics and lead to evolutionary outcomes that are not predicted

by classic eco-evolutionary modeling approaches. We also show, however, that

these outcomes are governed by nonequilibrium evolutionary attractors—
these are maxima in lifetime reproductive success when stochasticity keeps

the ecological system away from the deterministic equilibrium. These NEEAs

alter the path of evolution but are not visible through the equilibrium lens that

underlies much evolutionary theory. Our results reveal that considering popu-

lation processes during transient periods can greatly improve our understand-

ing of the path and pace of evolution.

KEYWORD S
eco-evolutionary dynamics, Gillespie eco-evolutionary model, Gillespie algorithm,
maladaptation, stochastic dynamics

INTRODUCTION

At the most fundamental level, ecological and evolution-
ary dynamics result from the individual-level stochastic
processes of birth, death, and mutation. In a large enough
population, the stochasticity of these processes is rela-
tively unimportant, and as a result, mathematical theory
in both ecology and evolutionary biology has tended to
assume that deterministic population-level dynamical
models are sufficient to describe ecological and evolu-
tionary dynamics and outcomes. Indeed, existing evolu-
tionary theories, such as the “canonical equation of
adaptive dynamics,” can be derived as limiting cases of a
general stochastic model (e.g., large population sizes with
rare mutations of small effect: [Champagnat et al., 2006;

Costa et al., 2016; Dieckmann & Law, 1996]), supporting
their value as general tools for studying ecology and evo-
lution. These deterministic models have therefore become
the basis for numerous advances in our understanding of
eco-evolutionary dynamics (Cortez & Weitz, 2014;
Fussmann et al., 2003; Govaert et al., 2019; Tirok
et al., 2011; Vasseur et al., 2011; Yoshida et al., 2004).

Many populations, however, show substantial
stochasticity in their ecological dynamics, even when the
populations are not particularly small (Lande et al., 2003;
Nisbet & Gurney, 2004; Shoemaker et al., 2020). This
stochasticity has been shown to substantially alter evolu-
tionary predictions. The effects can be straightforward,
such as the direct effect of genetic drift in slowing adapta-
tion and causing the loss of high-fitness genotypes
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(Lande, 1976). Other effects include reversals of expecta-
tions from the deterministic expectations. For example,
demographic stochasticity can favor the evolution of
slower-growing strategies if they have lower variance in
reproduction (e.g., bet hedging; Gillespie, 1975; Parsons
et al., 2018), even though the deterministic expectation is
for faster-growing strategies to evolve. Similarly,
stochasticity can favor cooperative strategies that improve
the environment for everyone (e.g., altruism; Constable
et al., 2016), in contrast to the deterministic expectation
that altruistic populations are easily invaded by
“cheaters” that benefit from public goods production
without reciprocating (the “tragedy of the commons”).
These studies suggest that a deeper understanding of the
impact of stochasticity on eco-evolutionary dynamics is
critically needed.

A fundamental component of deterministic eco-
evolutionary models is the evolutionarily stable strategy
(ESS) (Smith & Price, 1973). An ESS arises given trade-offs
among traits that contribute to fitness, such that there is
one combination of traits that maximizes fitness (locally)
and cannot be invaded by individuals with nearby trait
combinations. In the preceding examples, trade-offs occur
between transmission and virulence (Parsons et al., 2018),
growth rate and variance in growth (Gillespie, 1975), and
the costs and benefits of public goods production
(Constable et al., 2016). There are many trade-offs among
life history traits, however, that may influence evolutionary
dynamics and, thus, many possible ways in which an ESS
may arise in deterministic models. A commonly considered
trade-off is that between reproduction and mortality
(Reznick et al., 2000; Stearns, 1976). This trade-off has been
widely demonstrated across plants, invertebrates, and verte-
brates (Lee et al., 2008; Wilder et al., 2013), and its existence
suggests there should be an evolutionarily stable combina-
tion of birth rate and survival that maximizes fitness at a
population’s carrying capacity. But the effect of stochasticity
on such an ESS is unknown, despite its centrality to life
history theory and its connection to a wide range of
eco-evolutionary modeling efforts (e.g., Cortez &
Weitz, 2014; Fussmann et al., 2003; Tirok et al., 2011).

Here we use Gillespie eco-evolutionary models (GEMs)
(DeLong & Gibert, 2016; DeLong & Luhring, 2018) to
generate ecological and evolutionary dynamics through
the simulation of stochastic birth–death processes
(Champagnat et al., 2006; Dieckmann & Law, 1996;
Doebeli et al., 2017). Specifically, we test the hypothesis that
stochasticity will alter the expected evolutionary outcomes
by guiding trait evolution to a location other than that
predicted by the ESS. We compare dynamics from our
GEMs given an underlying trade-off between births and
deaths to deterministic expectations using a quantitative
genetics (QG) approach (Abrams et al., 1993; Lande, 1976).

We show that when demographic stochasticity causes
the asymptotic population size to be different than the
deterministic expectation, the birth trait evolves toward
a different attractor that maximizes lifetime reproductive
success (LRS), rather than maximizing per-capita growth
rate as assumed in the deterministic approach. We term
this alternative attractor a nonequilibrium evolutionary
attractor (NEEA), as stochasticity prevents the popula-
tion dynamics from reaching the expected equilibrium.
In combination with previous work (Gillespie, 1975;
Parsons et al., 2018), we suggest that these NEEAs may
arise in numerous ways and play an important role in
driving evolutionary dynamics in many natural systems
and, more generally, that understanding transient
eco-evolutionary phenomenon may provide new insights
into how populations evolve.

MATERIAL AND METHODS

Deterministic eco-evolutionary dynamics

The QG approach to modeling eco-evolutionary dynam-
ics allows for ecological and evolutionary dynamics to
occur on similar timescales (Abrams, 2001). The QG
approach derives the fitness gradient equation as an
approximation of the QG equations of Lande (1976),
which assume that the trait distribution is unimodal and
that the variance in fitness is greater than the variance in
the trait (Abrams et al., 1993; Abrams, 2001). An identical
expression can also be derived from the dynamics of
genotypes via the Price equation (Taylor & Day, 1997).
The rate of evolutionary change is also affected by the
additive genetic variance; this value is often held constant
but can be allowed to change dynamically (Abrams
et al., 1993; Taylor & Day, 1997; Tirok et al., 2011).

To investigate how stochasticity influences evolution-
ary dynamics, we consider the following simple model
for density-dependent population growth that can pro-
vide deterministic expectations:

dR
dt

¼ bmax �bsRð ÞR� dmin þdsRð ÞR, ð1Þ

where R is population abundance, bmax is the maximum
birth rate, dmin is the minimum death rate, and bs and ds
characterize the effects of population abundance on the
realized birth and death rates, respectively. This model is
a simple expansion of the logistic model (DeLong &
Coblentz, 2022), with the maximum rate of population
growth given as rmax = bmax � dmin and a carrying capac-
ity defined as K ¼ bmax � dmin

bs þ ds
. We redefine the logistic

model this way to allow us to simulate the ecological
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dynamics as a stochastic birth–death process rather than
a process with a net rate of population growth (Doebeli
et al., 2017). We chose a logistic-type model as an approx-
imation of the sigmoidal population growth dynamics
shown by a variety of organisms in relatively simple
scenarios (Gause, 1934; Lee et al., 2018).

We consider the case where the maximum birth rate
(bmax) is evolving and is connected to the minimum mor-
tality rate through a classic life-history trade-off between
reproduction and mortality (i.e., the minimum death rate
dmin is a function of bmax) (Reznick et al., 2000;
Stearns, 1976). More practically, positing such a trade-off
facilitates our analysis because it leads to an evolutionary
equilibrium where fitness (here, the per-capita rate of
population growth) is maximized. Using the QG
approach, the dynamics of the population mean trait,

bmax , are given by dbmax
dt ¼V ∂W

∂bmax

� �
bmax¼bmax

, where V is

the additive genetic variance (or the product of pheno-
typic variance and narrow-sense heritability) in bmax,
W ¼ 1

R
dR
dt

� �
is the per-capita growth rate given the trait

(i.e., mean individual fitness), and ∂W
∂bmax

� �
bmax¼bmax

is the

fitness gradient evaluated at the mean trait. The fitness
gradient will vanish at any potential evolutionary equilib-
rium. Given the preceding Equation (1), the fitness gradi-

ent is equal to 1�d0min bmax
� �

, which implies that the
minimum death rate (dmin) must be an increasing function
of the maximum birth rate (bmax) for an evolutionary equi-
librium to exist (otherwise the fitness gradient will not
change sign). For any equilibrium to represent a fitness

maximum requires ∂2W
∂b2max

¼�d00min bmaxð Þ<0, which implies

that the minimum death rate (dmin) must be an accelerat-
ing function of maximum birth rate (bmax). As such, we

assume that dmin ¼ cb2max , where c is a trade-off constant,
making the equation for the evolutionary dynamics

dbmax

dt
¼V 1�2cbmax

� � ð2Þ

Thus, in the deterministic QG model given by
Equations (1) and (2), the population will approach the
eco-evolutionary equilibrium:

bR¼K ¼ bmax �dmin

bsþds
, bmax ¼ 1

2c

� �
: ð3Þ

We call this value of the mean maximum birth rate
(bmax ) an ESS since it is an evolutionary equilibrium
where other trait values cannot invade and where fitness
is maximized.

Stochastic eco-evolutionary dynamics

GEMs simulate ecological dynamics through a stochastic
birth-death process (DeLong & Gibert, 2016; DeLong &
Luhring, 2018) and build on the standard Gillespie algo-
rithm for simulating ODE models, which allows demo-
graphic stochasticity (random variation in the sequence
and number of demographic events) to influence popula-
tion outcomes (Gillespie, 1977). By incorporating demo-
graphic heterogeneity (variation among individuals in
expected demographic traits) into the population and
allowing the heritability of traits between parents of off-
spring, evolutionary dynamics emerge from the sequence
of births and deaths. Unlike with a standard Gillespie
algorithm, where population size is represented by a
number, in a GEM, populations are represented as a col-
lection of individuals with distinct trait values
(e.g., parameters of the ecological model). Upon initiation
of the simulation, the traits of these individuals are
drawn from a probability distribution with a predefined
mean and variance, with the type of distribution
depending on the nature of the trait. Here, the trait of
interest is maximum birth rate (bmax), which also deter-
mines the minimum death rate (dmin) through the
trade-off function. Since bmax can only take positive
values, we draw the bmax values for the initial population
from a lognormal distribution.

In a GEM, an individual’s trait value determines its
probability of giving birth or dying. At each time step, an
individual is chosen at random and its probability of birth
or death is calculated by dividing the respective rate term
by the sum of all rate terms. Because events generally do
not have the same probability of occurrence, which event
occurs is determined by a random draw from a uniform
distribution (e.g., if the probability of birth is 0.4 and the
probability of death is 0.6, the individual gives birth if the
random draw is between 0 and 0.4 and dies otherwise). If
the event is a death, that individual (really its trait) is
removed from the population. If the event is a birth, a
new individual is added to the population, and its trait
(bmax) is drawn from a lognormal distribution with a
mean and variance that are determined by the parental
trait and specified rules for heritability of that trait
(Appendix S1). As a GEM is running, the loss and addi-
tion of individuals in the population affect both popula-
tion dynamics and the dynamics of both the mean and
variance of the trait distribution(s). Populations gradually
lose individuals with a high likelihood of mortality and
gradually add individuals with a higher likelihood of
births, generating natural selection without needing to
specify fitness gradients, explicit equations for the trait
dynamics, or the expected trait equilibria such as an ESS.
Evolutionary dynamics thus emerge out of the stochastic
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births and deaths of individuals within the population
(Champagnat et al., 2006; Dieckmann & Law, 1996;
Doebeli et al., 2017), even as they are built on the deter-
ministic equations that can be used to formulate QG and
AD approaches (Luhring & DeLong, 2020).

We evaluated differences between the GEM and QG
approaches by comparing outcomes across three different
levels of density dependence. We set the initial carrying
capacity (K) at 10, 20, and 40 individuals, created by set-
ting bs = ds = 0.075, 0.0375, and 0.0187, respectively; note
that as the populations evolve and bmax changes, the car-
rying capacity changes as well (Equation 3). We initial-
ized populations with five individuals; in this first set of
simulations, each individual’s trait was drawn from a dis-
tribution with a mean that was below the ESS (bmax ¼ 2);
later we will consider simulations where the mean of the
distribution started above the ESS. The ESS bmax for this
system is 5.4, which means the ESS dmin is 2.7. The CV of
the evolving trait (maximum birth rate, bmax) in the ini-
tial population was 0.3, such that the mean initial vari-
ance in bmax was about 0.29 (due to stochastic sampling),
and heritability (h2) was 0.75. For a check on the effect of
the trade-off parameter, we also varied c (values of 0.06,
0.09, and 1.2) using the same trait values and one level of
density dependence (bs ¼ ds ¼ 0:04). We expected that
populations with a smaller carrying capacity would dem-
onstrate greater stochasticity and average abundances
farther below their expected carrying capacity than in the
populations with larger carrying capacities, generating a
more pronounced effect of nonequilibrium asymptotic
behavior on the evolving trait. We expected a higher car-
rying capacity—and thus lower stochasticity—to facili-
tate convergence of the GEM solution with the QG
solution. We ran each simulation for 400 time steps and
replicated each stochastic simulation 50 times. All simu-
lations and ODE solutions were implemented in Matlab
version 2021a, and code is available at Zenodo
(DeLong, 2022). Abundances and traits of populations
that went extinct were included in the results while they
were extant. The number of extinctions that occurred
was 39, 4, and 0 extinctions in runs with K = 10, 20, and
40, respectively. Because extinct populations do not have
traits, they could not be included after extinction and
were thus not included for either traits or abundances.

To evaluate patterns in individual fitness (here, LRS)
across GEM simulations, we tracked the number of
reproductive events and the lifespan for each individual.
This allowed us to visualize the realized relationship
between each individual’s maximum birth rate (bmax)
and LRS. We do this for the population toward the end of
the simulation (born after time step 350), including only
individuals that died before the end of the simulation.

RESULTS

We found that all populations grew toward the
expected ecological equilibrium and that bmax evolved
toward the ESS across all levels of density dependence
(Figure 1, first, second, and fifth rows). Although no
population was able to grow or evolve as fast as
expected from QG (Figure 1, first and second rows),
the population experiencing the least density depen-
dence converged to the expected eco-evolutionary
equilibrium, whereas the populations with higher den-
sity dependence (and, hence, smaller deterministic
equilibrium population sizes) lagged behind. The
depiction of the eco-evolutionary dynamics in the
phase plane (Figure 1, fifth row) is also illustrative:
the initial ecological dynamics are much faster
than the evolutionary dynamics (i.e., the initial move-
ment in the phase plane is mostly in the direction of
increasing population abundance), and then both
abundance and the trait increase together toward the
eco-evolutionary equilibrium given by the orange
point (Figure 1, fifth row).

Nonevolutionary versions of our models (i.e., h2 = 0)
with no trait variation indicate that demographic
stochasticity per se is part of the reason that abundances
may not reach the carrying capacity (Appendix S2:
Figure S1; Lande et al., 2003; Nisbet & Gurney, 2004).
Adding trait variation can further suppress abundances,
with the magnitude of that effect dependent on which
traits have variation (Appendix S2: Figure S1). As
expected, the effects of stochasticity were noticeably
higher for small populations, with considerably more var-
iation in abundances through time for populations with
the highest density dependence (Figure 1, left column).
However, all populations displayed considerable individ-
ual demographic stochasticity (Figure 1, fourth row),
manifested as large differences in LRS among individuals
with the same trait values (van Daalen & Caswell, 2017).
In addition, there was considerable demographic hetero-
geneity in the populations even after the distribution of
maximum birth rate (bmax) values had centered on the
optimal (ESS) values.

It is also clear that the evolutionary dynamics often
do not reach the expected deterministic evolutionary
equilibrium, especially in small populations where demo-
graphic stochasticity is strong. In particular, the median
of the stochastic trajectories often settles onto or
approaches a trait value that is noticeably smaller than
the ESS (Figure 1, second and fifth rows). To help under-
stand this result, we calculated the expected LRS of an
individual (over time in their life, τ) from the model as
follows:
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LRS¼
ð∞
tb

bmax �bsR tð Þð Þe
�
ðt
tb

dminþdsR τð Þð Þdτ
dt: ð4Þ

If R tð Þ reaches an equilibrium, R tð Þ¼ bR, then these inte-
grals simplify, and LRS is the ratio of the per-capita
birth and death rates, LRS¼ðbmax �bsbR�=�dmin þdsbRÞ.

F I GURE 1 Legend on next page.

ECOLOGY 5 of 10



At such an equilibrium, the value of maximum birth
rate (bmax) that maximizes LRS is given as follows by the
solution of the equation ∂LRS

∂bmax
¼ 0:

bmax ¼ bsRþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bsRð Þ2þdsR

c

r
: ð5Þ

This deterministic LRS (a NEEA) provides an alternative
fitness metric that we can compare to the stochastically
realized LRS in our GEM simulation. Note that the value
of bmax that maximizes the expected LRS is not necessar-
ily the same as the ESS value (although when R is at its
deterministic equilibrium, the values are the same). It is
particularly important that this value depends on the cur-
rent population size, meaning that the value of bmax that
maximizes LRS changes as the population grows.
Examination of the observed LRS values from our simu-
lations reveals that the peak of the LRS distribution
occurs at the bmax value that maximizes LRS (i.e., the
NEEA; Figure 1, fourth row) and that the observed evolu-
tionary trajectory for bmax often appears to be
approaching this LRS peak rather than the ESS (Figure 1,
second and fifth rows). The outcome in which
populations evolved toward the LRS peak rather than an
ESS holds across a range of values for the trade-off slope, c
(Appendix S3: Figure S1).

However, because the LRS peak occurred below the
ESS and we initiated populations with a mean bmax

below the ESS, there is a possibility that trait evolution
did not reach the ESS because it was constrained by
genetic drift. That is, as the trait approaches the ESS, the
fitness gradient becomes shallower, selection against
mildly maladapted individuals weakens, and genetic
drift can prevent the trait mean from getting closer to
the ESS. This is the evolutionary analog of how demo-
graphic stochasticity prevents the population size from
reaching the expected ecological equilibrium. In other
words, we may have observed the outcome of
selection–drift balance rather than evolution toward an
alternative fitness peak. Alternatively, the failure to
reach the expected evolutionary equilibrium could have

been caused by a loss of genetic variability needed to
drive adaptive evolution. Indeed, populations with stron-
ger density dependence (i.e., higher values of bs and ds
and, therefore, lower Kinit values) experienced greater
initial loss of trait variation (Figure 1, third row), which
further slowed the pace of evolution relative to the QG
expectation. To evaluate these possibilities, we reran our
high-density-dependent simulation with the mean bmax

initiated above the ESS. If our results were due to
selection–drift balance, we would have expected the trait
mean to equilibrate slightly above the ESS, once selection
had weakened. Instead, we observed bmax decline past
the ESS toward the LRS peak, given the asymptotic popu-
lation size (Figure 2).

DISCUSSION

Ecological and evolutionary theory leans heavily on the
assumption of an ecological equilibrium in both the deri-
vation of approaches and predictions about the path and
outcomes of evolution (Abrams et al., 1993; Lande, 1976).
In particular, almost all derivations of ESSs, combina-
tions of traits that maximize fitness and cannot be
invaded by other nearby strategies, assume that the eco-
logical dynamics are equilibrial (but see Hite &
Cressler, 2018; Hoyle et al., 2011; Metz et al., 1992). The
identification—and mere existence—of an ESS guides
our intuition about evolution and the dynamics leading
to particular ecological and evolutionary outcomes. But
the assumption of ecological equilibrium will often be
violated in many systems in nature, given that many sys-
tems may be dynamically tracking environmental change
or recovering from perturbations. Furthermore, demo-
graphic stochasticity can alter ecological dynamics and
reduce the ability of even unperturbed systems from
reaching an ecological equilibrium (Lande et al., 2003;
Nisbet & Gurney, 2004). Indeed, much of the ecological
and evolutionary patterns we can observe may be
nonequilibrial, and as a result, the effect of demographic
stochasticity—and transient dynamics more generally

F I GURE 1 Gillespie eco-evolutionary model (GEM) simulations of birth–death logistic model. The rows show from top to bottom

population abundance, mean maximum birth rate (bmax), variance in bmax, lifetime reproductive success (product of expected births and

expected lifespan), and the mean trajectory through the abundance–bmax phase plane. The columns show three levels of density dependence

in birth and death rates (values of bs and ds) that set the initial carrying capacity at 10, 20, and 40 from left to right. (The initial carrying

capacity is the ecological equilibrium if bmax remains fixed at 1.8.) The median and middle 50% of 50 stochastic GEM trajectories are in

purple and light purple, respectively. The quantitative genetics (QG) expectation is in bold orange. The difference between the evolutionarily

stable strategy (ESS) and the nonequilibrium evolutionary attractors (NEEAs) can be seen by comparing the dashed orange and pink lines in

the second row. Lifetime reproductive success as a function of bmax is shown for individuals that were born and died within the last 50 time

steps. The evidence that the population evolves toward the NEEA is the convergence of the purple line in the second row with the dashed

pink line and by looking at the phase portrait in the fifth row. The dashed black line in row three is the average initial trait variance in the

population.
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(Hastings et al., 2018)—is of critical importance to our
understanding of ecological and evolutionary patterns.

Our results show that whenever stochasticity is strong
enough to alter the ecological steady state, the evolution-
ary outcome of the commonly invoked and observed
trade-off between reproduction and mortality is different
from that predicted by classical deterministic theory
(Figure 1). This result suggests that a stochastic view of
evolutionary dynamics will be critical whenever
attempting to understand evolution in rare or invading
populations or populations subject to perturbations or
fluctuating environmental conditions. Together with pre-
vious work demonstrating the effect of stochasticity on
the evolution of other traits, our work points to the

existence of another class of attractors—NEEAs.
Critically, these attractors are not necessarily fixed in
time. They may approach a relatively constant value if
the deterministic ecological system is expected to reach
an equilibrium (although stochasticity can still some-
times excite an underlying tendency to oscillate
[McKane & Newman, 2005]), but while the population is
growing or decining, the optimal value will be changing
too, causing the system to chase the attractor (Figure 1),
converging with the ESS only if and when the population
reaches the expected ecological equilibrium (e.g., its car-
rying capacity).

Our results also contribute to the body of theory
exploring the connection between “macroscopic” models

F I GURE 2 Gillespie eco-evolutionary model (GEM) simulations of birth–death logistic model. The fitness gradient for mean maximum

birth rate (bmax) is in the upper row, and bmax is in the second row. The columns differ in the initial starting value of bmax. Colors are the

same as in Figure 1, with bold orange showing quantitative genetics (QG) outcomes, dashed orange showing the evolutionary stable strategy

(ESS), pink showing the nonequilibrium evolutionary attractor (NEEA), and purple the GEM outcome. The fact that in both scenarios the

trait evolves to below the ESS and toward the NEEA indicates that the outcome is driven not by a shifting balance between genetic drift and

selection but by the peak in lifetime reproductive success that occurs away from the ESS during transient, nonequilibrium conditions.
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of trait evolution (e.g., equations for the dynamics of the
population mean traits) and the underlying “micro-
scopic” stochastic processes of individual birth, death,
and mutation (Doebeli et al., 2017). Other authors have
revealed how many of the classic “macroscopic” models
of evolutionary theory can be derived as limiting cases of
stochastic individual-level birth–death–mutation pro-
cesses. For example, in a landmark series of papers
(Champagnat, 2006; Champagnat et al., 2001, 2006),
Champagnat and colleagues showed that, from a general
stochastic model of births, deaths, and mutation, one can
derive the “continuum-of-alleles” model of population
genetics (Crow & Kimura, 1965; Kimura, 1965) by
assuming a large population size; by adding the assump-
tions of rare mutations of small effect, one recovers the
canonical equation of adaptive dynamics (Dieckmann &
Law, 1996). The rigorous approach described in these
papers has been extended to consider other evolutionary
scenarios, such as the coevolution of predators and
prey (Costa et al., 2016), showing again that classic
eco-evolutionary models can be recovered under appro-
priate assumptions. Other authors have considered spe-
cial cases where, for example, the assumption of large
population size is relaxed, but these approaches often
consider only a limited number of interacting types
(Constable et al., 2016; Parsons et al., 2010; Parsons &
Quince, 2007); for example, if evolution is mutation
limited but population sizes are finite, Parsons et al. was
able to derive a “stochastic adaptive dynamics” model
that recapitulates classic AD predictions when population
size is large (Parsons et al., 2018).

However, at the moment, there is still no general theory
that can be derived from stochastic birth–death–mutation
processes that can deal with the biologically realistic situa-
tion where population sizes are finite and ecological and
evolutionary processes happen on similar timescales
(i.e., mutations are neither particularly rare nor of small
effect). The impression this gives is that it is challenging to
describe stochastic eco-evolutionary dynamics with accessi-
ble mathematics, but this may not always be the case.
Although the model we investigate is relatively simple, our
results suggest that we can look to LRS as a flexible indica-
tor of evolutionary expectations in nonequilibrium systems.
Both our expressions for LRS (Equations 4 and 5) contain
R (population abundance), indicating that we can predict
the trait with the highest fitness at any moment as popula-
tion size changes. Indeed, our results show clear changes in
the optimal trait, with trait evolution chasing this optimal
trait through time. It thus may be possible, even in complex
models, to make nonequilibrium predictions for the path
and outcome of evolution, including the identification of
NEEAs that might mimic ESSs whenever a nonequilibrium
steady state ensues.

This means that the deterministic models may still
provide useful insights, even when stochasticity is
important, because they contain the terms needed to
estimate LRS. Several authors have shown that, in a
finite population, the probability of fixation of a
mutant allele is a better predictor of evolutionary
dynamics than the canonical equation of adaptive
dynamics (Champagnat & Lambert, 2007; Débarre &
Otto, 2016; Proulx & Day, 2001). The probability of fix-
ation for an allele (trait) a is 1� d að Þ

b að Þ (Champagnat, 2006;
Dieckmann & Law, 1996; Proulx & Day, 2001), which is
equivalent to 1�1=LRS. These models derive this result
by considering competition between two populations
with distinct alleles (Parsons & Quince, 2007). Here, we
show that LRS predicts the evolutionary outcome when
populations are composed of individuals each of whom
has a unique trait and where mutations are neither rare
nor small. Finally, our approach to simulating evolution
via a simple extension of the familiar Gillespie algorithm
provides an accessible entry point for studying
eco-evolutionary dynamics to ecologists who are comfort-
able with deterministic ecological models (DeLong &
Coblentz, 2022; DeLong & Gibert, 2016). This allows
ecologists to reformulate classic ecological models into
stochastic evolutionary birth–death–mutation processes
(DeLong & Belmaker, 2019; DeLong & Gibert, 2016;
DeLong & Luhring, 2018) to study the feedback between
ecological and evolutionary dynamics that emerges out of
such a reformulation.
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