30 research outputs found

    Neuronal induction and bioenergetics characterization of human forearm adipose stem cells from Parkinson’s disease patients and healthy controls

    Get PDF
    Parkinson's disease; Stem regenerative medicine; BioenergeticsEnfermedad de Parkinson; Medicina regenerativa del tallo; BioenergéticaMalaltia de Parkinson; Medicina regenerativa de tija; BioenergèticaNeurodegenerative diseases, such as Parkinson's disease, are heterogeneous disorders with a multifactorial nature involving impaired bioenergetics. Stem-regenerative medicine and bioenergetics have been proposed as promising therapeutic targets in the neurologic field. The rationale of the present study was to assess the potential of human-derived adipose stem cells (hASCs) to transdifferentiate into neuronal-like cells (NhASCs and neurospheres) and explore the hASC bioenergetic profile. hASC neuronal transdifferentiation was performed through neurobasal media and differentiation factor exposure. High resolution respirometry was assessed. Increased MAP-2 neuronal marker protein expression upon neuronal induction (p<0.05 undifferentiated hASCs vs. 28-36 days of differentiation) and increased bIII-tubulin neuronal marker protein expression upon neuronal induction (p<0.05 undifferentiated hASCs vs. 6-28-36 days of differentiation) were found. The bioenergetic profile was detectable through high-resolution respirometry approaches in hASCs but did not lead to differential oxidative capacity rates in healthy or clinically diagnosed PD-hASCs. We confirmed the capability of transdifferentiation to the neuronal-like profile of hASCs derived from the forearms of human subjects and characterized the bioenergetic profile. Suboptimal maximal respiratory capacity trends in PD were found. Neuronal induction leading to positive neuronal protein expression markers is a relevant issue that encourages the suitability of NhASC models in neurodegeneration

    Midbrain and pons MRI shape analysis and its clinical and CSF correlates in degenerative parkinsonisms: a pilot study

    Get PDF
    Multiple system atrophy; Neurofilament protein; Parkinsonian disordersAtròfia de sistemes múltiples; Proteïna del neurofilament; Trastorns de ParkinsonAtrofia multisistémica; Proteína de neurofilamento; Trastornos parkinsonianosObjectives: To conduct brainstem MRI shape analysis across neurodegenerative parkinsonisms and control subjects (CS), along with its association with clinical and cerebrospinal fluid (CSF) correlates. Methodology: We collected demographic and clinical variables, performed planimetric and shape MRI analyses, and determined CSF neurofilament-light chain (NfL) levels in 84 participants: 11 CS, 12 with Parkinson's disease (PD), 26 with multiple system atrophy (MSA), 21 with progressive supranuclear palsy (PSP), and 14 with corticobasal degeneration (CBD). Results: MSA featured the most extensive and significant brainstem shape narrowing (that is, atrophy), mostly in the pons. CBD presented local atrophy in several small areas in the pons and midbrain compared to PD and CS. PSP presented local atrophy in small areas in the posterior and upper midbrain as well as the rostral pons compared to MSA. Our findings of planimetric MRI measurements and CSF NfL levels replicated those from previous literature. Brainstem shape atrophy correlated with worse motor state in all parkinsonisms and with higher NfL levels in MSA, PSP, and PD. Conclusion: Atypical parkinsonisms present different brainstem shape patterns which correlate with clinical severity and neuronal degeneration. In MSA, shape analysis could be further explored as a potential diagnostic biomarker. By contrast, shape analysis appears to have a rather limited discriminant value in PSP

    Neuronal induction and bioenergetics characterization of human forearm adipose stem cells from Parkinson's disease patients and healthy controls

    Full text link
    Neurodegenerative diseases, such as Parkinson's disease, are heterogeneous disorders with a multifactorial nature involving impaired bioenergetics. Stem-regenerative medicine and bioenergetics have been proposed as promising therapeutic targets in the neurologic field. The rationale of the present study was to assess the potential of human-derived adipose stem cells (hASCs) to transdifferentiate into neuronal-like cells (NhASCs and neurospheres) and explore the hASC bioenergetic profile. hASC neuronal transdifferentiation was performed through neurobasal media and differentiation factor exposure. High resolution respirometry was assessed. Increased MAP-2 neuronal marker protein expression upon neuronal induction (p<0.05 undifferentiated hASCs vs. 28-36 days of differentiation) and increased bIII-tubulin neuronal marker protein expression upon neuronal induction (p<0.05 undifferentiated hASCs vs. 6-28-36 days of differentiation) were found. The bioenergetic profile was detectable through high-resolution respirometry approaches in hASCs but did not lead to differential oxidative capacity rates in healthy or clinically diagnosed PD-hASCs. We confirmed the capability of transdifferentiation to the neuronal-like profile of hASCs derived from the forearms of human subjects and characterized the bioenergetic profile. Suboptimal maximal respiratory capacity trends in PD were found. Neuronal induction leading to positive neuronal protein expression markers is a relevant issue that encourages the suitability of NhASC models in neurodegeneration

    Parkin loss of function contributes to RTP801 elevation and neurodegeneration in Parkinson"s disease

    Get PDF
    Mutations in the PARK2 gene are associated with an autosomal recessive form of juvenile parkinsonism (AR-JP). These mutations affect parkin solubility and impair its E3 ligase activity, leading to a toxic accumulation of proteins within susceptible neurons that results in a slow but progressive neuronal degeneration and cell death. Here, we report that RTP801/REDD1, a pro-apoptotic negative regulator of survival kinases mTOR and Akt, is one of such parkin substrates. We observed that parkin knockdown elevated RTP801 in sympathetic neurons and neuronal PC12 cells, whereas ectopic parkin enhanced RTP801 poly-ubiquitination and proteasomal degradation. In parkin knockout mouse brains and in human fibroblasts from AR-JP patients with parkin mutations, RTP801 levels were elevated. Moreover, in human postmortem PD brains with mutated parkin, nigral neurons were highly positive for RTP801. Further consistent with the idea that RTP801 is a substrate for parkin, the two endogenous proteins interacted in reciprocal co-immunoprecipitates of cell lysates. A potential physiological role for parkin-mediated RTP801 degradation is indicated by observations that parkin protects neuronal cells from death caused by RTP801 overexpression by mediating its degradation, whereas parkin knockdown exacerbates such death. Similarly, parkin knockdown enhanced RTP801 induction in neuronal cells exposed to the Parkinson's disease mimetic 6-hydroxydopamine and increased sensitivity to this toxin. This response to parkin loss of function appeared to be mediated by RTP801 as it was abolished by RTP801 knockdown. Taken together these results indicate that RTP801 is a novel parkin substrate that may contribute to neurodegeneration caused by loss of parkin expression or activity

    Nigral and striatal connectivity alterations in asymptomatic LRRK2 mutation carriers: A magnetic resonance imaging study

    Get PDF
    Background. The study of the functional connectivity by means of magnetic resonance imaging (MRI) in asymptomatic LRRK2 mutation carriers could contribute to the characterization of the prediagnostic phase of LRRK2 associated Parkinson's disease (PD). Objective. To characterize MRI functional patterns during resting state in asymptomatic LRRK2 mutation carriers. Methods. We acquired structural and functional MRI data of 18 asymptomatic LRRK2 mutation carriers and 18 asymptomatic LRRK2 mutation noncarriers, all first-degree relatives of LRRK2-PD patients. Starting from resting state data, we analyzed the functional connectivity of the striatocortical and the nigrocortical circuitry. Structural brain data was analyzed by voxel based morphometry, cortical thickness and volumetric measures. Results: Asymptomatic LRRK2 mutation carriers had functional connectivity reductions between the caudal motor part of the left striatum and ipsilateral precuneus and superior parietal lobe. Connectivity in these regions correlated with subcortical gray matter volumes in mutation carriers. Asymptomatic carriers also showed increased connectivity between the right substantia nigra and bilateral occipital cortical regions (occipital pole and cuneus bilaterally, and right lateral occipital cortex). No intergroup differences in structural MRI measures were found. In LRRK2 mutation carriers, age and functional connectivity correlated negatively with striatal volumes. Additional analyses including only subjects with the G2019S mutation revealed similar findings. Conclusion: Asymptomatic LRRK2 mutation carriers showed functional connectivity changes in striatocortical and nigrocortical circuits compared with noncarriers. These findings support the concept that altered brain connectivity precedes the onset of classical motor features in a genetic form of PD

    Sleep Disorders in Parkinsonian and Nonparkinsonian LRRK2 Mutation Carriers

    Get PDF
    Objective: In idiopathic Parkinson disease (IPD) sleep disorders are common and may antedate the onset of parkinsonism. Based on the clinical similarities between IPD and Parkinson disease associated with LRRK2 gene mutations (LRRK2-PD), we aimed to characterize sleep in parkinsonian and nonmanifesting LRRK2 mutation carriers (NMC). Methods: A comprehensive interview conducted by sleep specialists, validated sleep scales and questionnaires, and video-polysomnography followed by multiple sleep latency test (MSLT) assessed sleep in 18 LRRK2-PD (17 carrying G2019S and one R1441G mutations), 17 NMC (11 G2019S, three R1441G, three R1441C), 14 non-manifesting non-carriers (NMNC) and 19 unrelated IPD. Results: Sleep complaints were frequent in LRRK2-PD patients; 78% reported poor sleep quality, 33% sleep onset insomnia, 56% sleep fragmentation and 39% early awakening. Sleep onset insomnia correlated with depressive symptoms and poor sleep quality. In LRRK2-PD, excessive daytime sleepiness (EDS) was a complaint in 33% patients and short sleep latencies on the MSLT, which are indicative of objective EDS, were found in 71%. Sleep attacks occurred in three LRRK2-PD patients and a narcoleptic phenotype was not observed. REM sleep behavior disorder (RBD) was diagnosed in three LRRK2-PD. EDS and RBD were always reported to start after the onset of parkinsonism in LRRK2-PD. In NMC, EDS was rarely reported and RBD was absent. When compared to IPD, sleep onset insomnia was more significantly frequent, EDS was similar, and RBD was less significantly frequent and less severe in LRRK2-PD. In NMC, RBD was not detected and sleep complaints were much less frequent than in LRRK2-PD. No differences were observed in sleep between NMC and NMNC. Conclusions: Sleep complaints are frequent in LRRK2-PDand show a pattern that when compared to IPD is characterized by more frequent sleep onset insomnia, similar EDS and less prominent RBD. Unlike in IPD, RBD and EDS seem to be not markers of the prodromal stage of LRRK2-PD

    Cancer outcomes among Parkinson's disease patients with leucine rich repeat kinase 2 mutations, idiopathic Parkinson's disease patients, and nonaffected controls

    Get PDF
    BACKGROUND: Increased cancer risk has been reported in Parkinson's disease (PD) patients carrying the leucine rich repeat kinase 2 (LRRK2) G2019S mutation (LRRK2-PD) in comparison with idiopathic PD (IPD). It is unclear whether the elevated risk would be maintained when compared with unaffected controls. METHODS: Cancer outcomes were compared among 257 LRRK2-PD patients, 712 IPD patients, and 218 controls recruited from 7 LRRK2 consortium centers using mixed-effects logistic regression. Data were then pooled with a previous study to examine cancer risk between 401 LRRK2-PD and 1946 IPD patients. RESULTS: Although cancer prevalence was similar among LRRK2-PD patients (32.3%), IPD patients (27.5%), and controls (27.5%; P = 0.33), LRRK2-PD had increased risks of leukemia (odds ratio [OR] = 4.55; 95% confidence interval [CI], 1.46-10.61) and skin cancer (OR = 1.61; 95% CI, 1.09-2.37). In the pooled analysis, LRRK2-PD patients had also elevated risks of leukemia (OR = 9.84; 95% CI, 2.15-44.94) and colon cancer (OR = 2.34; 95% CI, 1.15-4.74) when compared with IPD patients. CONCLUSIONS: The increased risks of leukemia as well as skin and colon cancers among LRRK2-PD patients suggest that LRRK2 mutations heighten risks of certain cancers. © 2019 International Parkinson and Movement Disorder Society

    Inflammatory profile in LRRK2-associated prodromal and clinical PD

    Get PDF
    BACKGROUND There is evidence for a relevant role of inflammation in the pathogenesis of Parkinson's disease (PD). Mutations in the LRRK2 gene represent the most frequent genetic cause for autosomal dominant PD. LRRK2 is highly expressed in macrophages and microglia suggesting an involvement in inflammatory pathways. The objectives are to test (1) whether idiopathic PD and LRRK2-associated PD share common inflammatory pathways or present distinct profiles and (2) whether non-manifesting LRRK2 mutation carriers present with similar aspects of inflammatory profiles as seen in PD-affected patients. METHODS We assessed serum profiles of 23 immune-associated markers and the brain-derived neurotrophic factor in 534 individuals from the MJFF LRRK2 consortium. RESULTS A large proportion of inflammatory markers were gender-dependent. Both PD-affected cohorts showed increased levels of the pro-inflammatory marker fatty-acid-binding protein. Additionally, idiopathic PD but not LRRK2-associated PD patients showed increased levels of the pro-inflammatory marker interleukin-12-p40 as well as the anti-inflammatory species interleukin-10, brain-derived neurotrophic factor, and stem cell factor. Non-manifesting LRRK2 mutation carriers including those with prodromal characteristics of PD presented with control-like inflammatory profiles. CONCLUSIONS Concomitant inflammation seems to be associated with idiopathic and LRRK2-associated PD. Identifying PD patients in whom inflammatory processes play a major role in their pathophysiology might offer a new therapeutic window at least for a subgroup of patients. Since non-manifesting LRRK2 mutation carriers with symptoms of the prodromal phase of PD did not show inflammatory profiles, activation of the immune system seems not an early event in the disease cascade

    Sleep disorders in parkinsonian and nonparkinsonian LRRK2 mutation carriers

    No full text
    OBJECTIVE: In idiopathic Parkinson disease (IPD) sleep disorders are common and may antedate the onset of parkinsonism. Based on the clinical similarities between IPD and Parkinson disease associated with LRRK2 gene mutations (LRRK2-PD), we aimed to characterize sleep in parkinsonian and nonmanifesting LRRK2 mutation carriers (NMC). METHODS: A comprehensive interview conducted by sleep specialists, validated sleep scales and questionnaires, and video-polysomnography followed by multiple sleep latency test (MSLT) assessed sleep in 18 LRRK2-PD (17 carrying G2019S and one R1441G mutations), 17 NMC (11 G2019S, three R1441G, three R1441C), 14 non-manifesting non-carriers (NMNC) and 19 unrelated IPD./nRESULTS: Sleep complaints were frequent in LRRK2-PD patients; 78% reported poor sleep quality, 33% sleep onset insomnia, 56% sleep fragmentation and 39% early awakening. Sleep onset insomnia correlated with depressive symptoms and poor sleep quality. In LRRK2-PD, excessive daytime sleepiness (EDS) was a complaint in 33% patients and short sleep latencies on the MSLT, which are indicative of objective EDS, were found in 71%. Sleep attacks occurred in three LRRK2-PD patients and a narcoleptic phenotype was not observed. REM sleep behavior disorder (RBD) was diagnosed in three LRRK2-PD. EDS and RBD were always reported to start after the onset of parkinsonism in LRRK2-PD. In NMC, EDS was rarely reported and RBD was absent. When compared to IPD, sleep onset insomnia was more significantly frequent, EDS was similar, and RBD was less significantly frequent and less severe in LRRK2-PD. In NMC, RBD was not detected and sleep complaints were much less frequent than in LRRK2-PD. No differences were observed in sleep between NMC and NMNC. CONCLUSIONS: Sleep complaints are frequent in LRRK2-PDand show a pattern that when compared to IPD is characterized by more frequent sleep onset insomnia, similar EDS and less prominent RBD. Unlike in IPD, RBD and EDS seem to be not markers of the prodromal stage of LRRK2-PD.This manuscript received support through the grant number 061130/31 from "La Fundació la Marató de TV3" to Eduard Tolosa. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
    corecore