93 research outputs found

    Intergenerational correlations in size at birth and the contribution of environmental factors: The Uppsala Birth Cohort Multigenerational Study, Sweden, 1915-2002.

    No full text
    Sizes at birth of parents and their children are known to be correlated, reflecting in part the influence of fetal and maternal genes. Sociodemographic factors, regarded as aspects of the shared environment across generations, would also be expected to contribute, but evidence is limited. In the present study, the authors aimed to quantify the role of the shared environment in explaining intergenerational correlations in birth weight and length by using data across 3 consecutive generations from the Uppsala Birth Cohort Multigenerational Study in Uppsala, Sweden. That study included birth and sociodemographic data on 7,657 singletons born in Uppsala in 1915-1929 (generation 1) and their grandchildren (generation 3). Standard regression and biometric models were used to study the correlations in size at birth of generation 1-generation 3 pairs. The data showed stronger correlations in maternal pairs than in paternal pairs for birth weight (0.125 vs. 0.096, P = 0.02) but not for birth length (0.097 vs. 0.093, P = 0.77). These correlations were not reduced by adjustment for sociodemographic factors in regression models. In contrast, significant shared-environment contributions to the intergenerational correlations were identified in biometric models, averaging 14% for both birth measures. These models assumed a common latent factor for the sociodemographic variables. The present results show that the shared environment moderately but significantly contributes to intergenerational correlations

    Risk of Birth Abnormalities in the Offspring of Men With a History of Cancer: A Cohort Study Using Danish and Swedish National Registries

    Get PDF
    Background The potential mutagenic effects of cancer therapies and the growing number of young male cancer survivors have given rise to concern about the health of their offspring. Methods We identified all singleton children born alive in Denmark between 1994 and 2004 and in Sweden between 1994 and 2005 (n = 1 777 765). Of the 8670 children with a paternal history of cancer, 8162 were conceived naturally and 508 were conceived using assisted reproductive technologies (ARTs) (in vitro fertilization or intracytoplasmatic sperm injection). Of the 1 769 0795 children without a paternal history of cancer, 25 926 were conceived using ARTs. Associations between paternal history of cancer and risk of adverse birth outcomes of children conceived naturally or by ARTs were investigated using log-linear binomial models, yielding risk ratios (RRs) with 95% confidence intervals (CIs). All statistical tests were two-sided. Results The offspring of male cancer survivors were more likely to have major congenital abnormalities than the offspring of fathers with no history of cancer (RR = 1.17, 95% CI = 1.05 to 1.31, P = .0043, 3.7% vs 3.2%). However, the mode of conception (natural conception or ARTs) did not modify the association between paternal history of cancer and risk of congenital abnormalities (natural conception, RR = 1.17, 95% CI = 1.04 to 1.31; ARTs, RR = 1.22, 95% CI = 0.80 to 1.87, P(interaction) = .84). Conclusion We observed a statistically significant but modest increase in the risk of major congenital abnormalities among offspring of males with a history of cancer, independent of the mode of conception

    Small-molecule-mediated OGG1 inhibition attenuates pulmonary inflammation and lung fibrosis in a murine lung fibrosis model

    Get PDF
    Interstitial lung diseases such as idiopathic pulmonary fibrosis (IPF) are caused by persistent micro-injuries to alveolar epithelial tissues accompanied by aberrant repair processes. IPF is currently treated with pirfenidone and nintedanib, compounds which slow the rate of disease progression but fail to target underlying pathophysiological mechanisms. The DNA repair protein 8-oxoguanine DNA glycosylase-1 (OGG1) has significant roles in the modulation of inflammation and metabolic syndromes. Currently, no pharmaceutical solutions targeting OGG1 have been utilized in the treatment of IPF. In this study we show Ogg1-targeting siRNA mitigates bleomycin-induced pulmonary fibrosis in male mice, highlighting OGG1 as a tractable target in lung fibrosis. The small molecule OGG1 inhibitor, TH5487, decreases myofibroblast transition and associated pro-fibrotic gene expressions in fibroblast cells. In addition, TH5487 decreases levels of pro-inflammatory mediators, inflammatory cell infiltration, and lung remodeling in a murine model of bleomycin-induced pulmonary fibrosis conducted in male C57BL6/J mice. OGG1 and SMAD7 interact to induce fibroblast proliferation and differentiation and display roles in fibrotic murine and IPF patient lung tissue. Taken together, these data suggest that TH5487 is a potentially clinically relevant treatment for IPF but further study in human trials is required

    Preterm Birth in Caucasians Is Associated with Coagulation and Inflammation Pathway Gene Variants

    Get PDF
    Spontaneous preterm birth (<37 weeks gestation—PTB) occurs in ∼12% of pregnancies in the United States, and is the largest contributor to neonatal morbidity and mortality. PTB is a complex disease, potentially induced by several etiologic factors from multiple pathophysiologic pathways. To dissect the genetic risk factors of PTB a large-scale high-throughput candidate gene association study was performed examining 1536 SNP in 130 candidate genes from hypothesized PTB pathways. Maternal and fetal DNA from 370 US Caucasian birth-events (172 cases and 198 controls) was examined. Single locus, haplotype, and multi-locus association analyses were performed separately on maternal and fetal data. For maternal data the strongest associations were found in genes in the complement-coagulation pathway related to decidual hemorrhage in PTB. In this pathway 3 of 6 genes examined had SNPs significantly associated with PTB. These include factor V (FV) that was previously associated with PTB, factor VII (FVII), and tissue plasminogen activator (tPA). The single strongest effect was observed in tPA marker rs879293 with a significant allelic (p = 2.30×10−3) and genotypic association (p = 2.0×10−6) with PTB. The odds ratio (OR) for this SNP was 2.80 [CI 1.77–4.44] for a recessive model. Given that 6 of 8 markers in tPA were statistically significant, sliding window haplotype analyses were performed and revealed an associating 4 marker haplotype in tPA (p = 6.00×10−3). The single strongest effect in fetal DNA was observed in the inflammatory pathway at rs17121510 in the interleukin-10 receptor antagonist (IL-10RA) gene for allele (p = 0.01) and genotype (p = 3.34×10−4). The OR for the IL-10RA genotypic additive model was 1.92 [CI 1.15–3.19] (p = 2.00×10−3). Finally, exploratory multi-locus analyses in the complement and coagulation pathway were performed and revealed a potentially significant interaction between a marker in FV (rs2187952) and FVII (rs3211719) (p<0.001). These results support a role for genes in both the coagulation and inflammation pathways, and potentially different maternal and fetal genetic risks for PTB

    Determinants of serum concentrations of organochlorine compounds in Swedish pregnant women: a cross-sectional study

    Get PDF
    BACKGROUND: We performed a cross-sectional study of associations between personal characteristics and lipid-adjusted serum concentrations of certain PCB congeners and chlorinated pesticides/metabolites among 323 pregnant primiparous women from Uppsala County (age 18–41 years) sampled 1996–1999. METHODS: Extensive personal interviews and questionnaires about personal characteristics were performed both during and after pregnancy. Concentrations of organochlorine compounds in serum lipids in late pregnancy were analysed by gas chromatography. Associations between personal characteristics and serum levels of organochlorine compounds were analysed by multiple linear regression. RESULTS: Participation rate was 82% (325 of 395 women). Serum concentrations of PCB congeners IUPAC no. 28, 52, 101, 105 and 167, and o, p'-DDT and -DDE, p, p'-DDT and -DDD, oxychlordane, and γ- and α-HCH were in many cases below the limit of quantification (LOQ). No statistical analysis of associations with personal characteristics could be performed for these substances. Concentrations of PCB congeners IUPAC no. 118, 138, 153, 156 and 180, HCB, β-HCH, trans-nonachlor and p, p'-DDE increased with increased age and were highest in women sampled early during the 4 year study period. This shows that older women and women sampled early in the study had experienced the highest life-time exposure levels, probably mainly during childhood and adolescence. The importance of early exposures was supported by lower PCB concentrations and higher β-HCH and p, p'-DDE concentrations among women born in non-Nordic countries. Moreover, serum concentrations of certain PCBs and pesticide/metabolites were positively associated with consumption of fatty fish during adolescence, and concentrations of CB 156, CB 180 and p, p'-DDE increased significantly with number of months women had been breast-fed during infancy. Short-term changes in bodily constitution may, however, also influence serum concentrations, as suggested by negative associations between concentrations of organochlorine compounds and BMI before pregnancy and weight change during pregnancy. CONCLUSION: Although some of the associations could be caused by unknown personal characteristics confounding the results, our findings suggest that exposures to organochlorine compounds during childhood and adolescence influence the body burdens of the compounds during pregnancy

    Interaction between maternal caffeine intake during pregnancy and CYP1A2 C164A polymorphism affects infant birth size in the Hokkaido study

    Get PDF
    BACKGROUND: Caffeine, 1,3,7-trimethylxanthine, is widely consumed by women of reproductive age. Although caffeine has been proposed to inhibit fetal growth, previous studies on the effects of caffeine on infant birth size have yielded inconsistent findings. This inconsistency may result from failure to account for individual differences in caffeine metabolism related to polymorphisms in the gene for CYP1A2, the major caffeine-metabolizing enzyme. METHODS: Five hundred fourteen Japanese women participated in a prospective cohort study in Sapporo, Japan, from 2002 to 2005, and 476 mother-child pairs were included for final analysis. RESULTS: Caffeine intake was not significantly associated with mean infant birth size. When caffeine intake and CYP1A2 C164A genotype were considered together, women with the AA genotype and caffeine intake of >= 300 mg per day had a mean reduction in infant birth head circumference of 0.8 cm relative to the reference group after adjusting for confounding factors. In a subgroup analysis, only nonsmokers with the AA genotype and caffeine intake of >= 300 mg per day had infants with decreased birth weight (mean reduction, 277 g) and birth head circumference (mean reduction, 1.0 cm). CONCLUSION: Nonsmokers who rapidly metabolize caffeine may be at increased risk for having infants with decreased birth size when consuming >= 300 mg of caffeine per day.This is the author's accepted version of their manuscript of the following article: Sasaki, et al. Pediatric Research (2017) 82, 19–28. The final publication is available at: http://dx.doi.org/10.1038/pr.2017.7

    Early pregnancy peripheral blood gene expression and risk of preterm delivery: a nested case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Preterm delivery (PTD) is a significant public health problem associated with greater risk of mortality and morbidity in infants and mothers. Pathophysiologic processes that may lead to PTD start early in pregnancy. We investigated early pregnancy peripheral blood global gene expression and PTD risk.</p> <p>Methods</p> <p>As part of a prospective study, ribonucleic acid was extracted from blood samples (collected at 16 weeks gestational age) from 14 women who had PTD (cases) and 16 women who delivered at term (controls). Gene expressions were measured using the GeneChip<sup>® </sup>Human Genome U133 Plus 2.0 Array. Student's T-test and fold change analysis were used to identify differentially expressed genes. We used hierarchical clustering and principle components analysis to characterize signature gene expression patterns among cases and controls. Pathway and promoter sequence analyses were used to investigate functions and functional relationships as well as regulatory regions of differentially expressed genes.</p> <p>Results</p> <p>A total of 209 genes, including potential candidate genes (e.g. PTGDS, prostaglandin D2 synthase 21 kDa), were differentially expressed. A set of these genes achieved accurate pre-diagnostic separation of cases and controls. These genes participate in functions related to immune system and inflammation, organ development, metabolism (lipid, carbohydrate and amino acid) and cell signaling. Binding sites of putative transcription factors such as EGR1 (early growth response 1), TFAP2A (transcription factor AP2A), Sp1 (specificity protein 1) and Sp3 (specificity protein 3) were over represented in promoter regions of differentially expressed genes. Real-time PCR confirmed microarray expression measurements of selected genes.</p> <p>Conclusions</p> <p>PTD is associated with maternal early pregnancy peripheral blood gene expression changes. Maternal early pregnancy peripheral blood gene expression patterns may be useful for better understanding of PTD pathophysiology and PTD risk prediction.</p

    Fetal Movement Counting Improved Identification of Fetal Growth Restriction and Perinatal Outcomes – a Multi-Centre, Randomized, Controlled Trial

    Get PDF
    Background Fetal movement counting is a method used by the mother to quantify her baby's movements, and may prevent adverse pregnancy outcome by a timely evaluation of fetal health when the woman reports decreased fetal movements. We aimed to assess effects of fetal movement counting on identification of fetal pathology and pregnancy outcome. Methodology In a multicentre, randomized, controlled trial, 1076 pregnant women with singleton pregnancies from an unselected population were assigned to either perform fetal movement counting from gestational week 28, or to receive standard antenatal care not including fetal movement counting (controls). Women were recruited from nine Norwegian hospitals during September 2007 through November 2009. Main outcome was a compound measure of fetal pathology and adverse pregnancy outcomes. Analysis was performed by intention-to-treat. Principal Findings The frequency of the main outcome was equal in the groups; 63 of 433 (11.6%) in the intervention group, versus 53 of 532 (10.7%) in the control group [RR: 1.1 95% CI 0.7–1.5)]. The growth-restricted fetuses were more often identified prior to birth in the intervention group than in the control group; 20 of 23 fetuses (87.0%) versus 12 of 20 fetuses (60.0%), respectively, [RR: 1.5 (95% CI 1.0–2.1)]. In the intervention group two babies (0.4%) had Apgar scores <4 at 1 minute, versus 12 (2.3%) in the control group [RR: 0.2 (95% CI 0.04–0.7)]. The frequency of consultations for decreased fetal movement was 71 (13.1%) and 57 (10.7%) in the intervention and control groups, respectively [RR: 1.2 (95% CI 0.9–1.7)]. The frequency of interventions was similar in the groups. Conclusions Maternal ability to detect clinically important changes in fetal activity seemed to be improved by fetal movement counting; there was an increased identification of fetal growth restriction and improved perinatal outcome, without inducing more consultations or obstetric intervention

    Immune cell counts and risks of respiratory infections among infants exposed pre- and postnatally to organochlorine compounds: a prospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early-life chemical exposure may influence immune system development, subsequently affecting child health. We investigated immunomodulatory potentials of polychlorinated biphenyls (PCBs) and <it>p,p'</it>-DDE in infants.</p> <p>Methods</p> <p>Prenatal exposure to PCBs and <it>p,p'</it>-DDE was estimated from maternal serum concentrations during pregnancy. Postnatal exposure was calculated from concentrations of the compounds in mother's milk, total number of nursing days, and percentage of full nursing each week during the 3 month nursing period. Number and types of infections among infants were registered by the mothers (N = 190). White blood cell counts (N = 86) and lymphocyte subsets (N = 52) were analyzed in a subgroup of infants at 3 months of age.</p> <p>Results</p> <p>Infants with the highest prenatal exposure to PCB congeners CB-28, CB-52 and CB-101 had an increased risk of respiratory infection during the study period. In contrast, the infection odds ratios (ORs) were highest among infants with the lowest prenatal mono-<it>ortho </it>PCB (CB-105, CB-118, CB-156, CB-167) and di-<it>ortho </it>PCB (CB-138, CB-153, CB-180) exposure, and postnatal mono- and di-<it>ortho </it>PCB, and <it>p,p'</it>-DDE exposure. Similar results were found for pre- and postnatal CB-153 exposure, a good marker for total PCB exposure. Altogether, a negative relationship was indicated between infections and total organochlorine compound exposure during the whole pre- and postnatal period. Prenatal exposure to CB-28, CB-52 and CB-101 was positively associated with numbers of lymphocytes and monocytes in infants 3 months after delivery. Prenatal exposure to <it>p,p'</it>-DDE was negatively associated with the percentage of eosinophils. No significant associations were found between PCB and <it>p,p'</it>-DDE exposure and numbers/percentages of lymphocyte subsets, after adjustment for potential confounders.</p> <p>Conclusion</p> <p>This hypothesis generating study suggests that background exposure to PCBs and <it>p,p'</it>-DDE early in life modulate immune system development. Strong correlations between mono- and di-<it>ortho </it>PCBs, and <it>p,p'</it>-DDE exposures make it difficult to identify the most important contributor to the suggested immunomodulation, and to separate effects due to pre- and postnatal exposure. The suggested PCB and <it>p,p'</it>-DDE modulation of infection risks may have consequences for the health development during childhood, since respiratory infections early in life may be risk factors for asthma and middle ear infections.</p
    corecore