179 research outputs found

    Optimal all-optical switching of a microcavity resonance in the telecom range using the electronic Kerr effect

    Get PDF
    We have switched GaAs/AlAs and AlGaAs/AlAs planar microcavities that operate in the "Original" (O) telecom band by exploiting the instantaneous electronic Kerr effect. We observe that the resonance frequency reversibly shifts within one picosecond. We investigate experimentally and theoretically the role of several main parameters: the material backbone and its electronic bandgap, the pump power, the quality factor, and the duration of the switch pulse. The magnitude of the shift is reduced when the backbone of the central λ\lambda-layer has a greater electronic bandgap; pumping with photon energies near the bandgap resonantly enhances the switched magnitude. Our model shows that the magnitude of the resonance frequency shift depends on the pump pulse duration and is maximized when the duration matches the cavity storage time that is set by the quality factor. We provide the settings for the essential parameters so that the frequency shift of the cavity resonance can be increased to one linewidth

    Differential ultrafast all-optical switching of the resonances of a micropillar cavity

    Get PDF
    We perform frequency- and time-resolved all-optical switching of a GaAs-AlAs micropillar cavity using an ultrafast pump-probe setup. The switching is achieved by two-photon excitation of free carriers. We track the cavity resonances in time with a high frequency resolution. The pillar modes exhibit simultaneous frequency shifts, albeit with markedly different maximum switching amplitudes and relaxation dynamics. These differences stem from the non-uniformity of the free carrier density in the micropillar, and are well understood by taking into account the spatial distribution of injected free carriers, their spatial diffusion and surface recombination at micropillar sidewalls.Comment: 4 pages, 3 figure

    Optical characterization and selective addressing of the resonant modes of a micropillar cavity with a white light beam

    Get PDF
    We have performed white-light reflectivity measurements on GaAs/AlAs micropillar cavities with diameters ranging from 1 {\mu}m up to 20 {\mu}m. We are able to resolve the spatial field distribution of each cavity mode in real space by scanning a small-sized beam across the top facet of each micropillar. We spectrally resolve distinct transverse optical cavity modes in reflectivity. Using this procedure we can selectively address a single mode in the multimode micropillar cavity. Calculations for the coupling efficiency of a small-diameter beam to each mode are in very good agreement with our reflectivity measurements.Comment: 7 pages, 8 figure

    Segmentation fonctionnelle de séquences d'IRM rénales à rehaussement de contraste par quantification vectorielle

    No full text
    En Imagerie par Résonance Magnétique (IRM) à rehaussement de contraste, la segmentation des structures internes du rein est nécessaire pour une étude de la fonction rénale par compartiment. Pour éviter une segmentation manuelle fastidieuse, deux méthodes (semi-)automatiques, utilisant un algorithme de quantification vectorielle visant à regrouper les pixels rénaux d'après leurs vecteurs temps-intensité, sont proposées et validées sur des données réelles

    Large and uniform optical emission shifts in quantum dots externally strained along their growth axis

    Full text link
    We introduce a method which enables to directly compare the impact of elastic strain on the optical properties of distinct quantum dots (QDs). Specifically, the QDs are integrated in a cross-section of a semiconductor core wire which is surrounded by an amorphous straining shell. Detailed numerical simulations show that, thanks to the mechanical isotropy of the shell, the strain field in a core section is homogeneous. Furthermore, we use the core material as an in situ strain gauge, yielding reliable values for the emitter energy tuning slope. This calibration technique is applied to self-assembled InAs QDs submitted to incremental tensile strain along their growth axis. In contrast to recent studies conducted on similar QDs stressed perpendicularly to their growth axis, optical spectroscopy reveals 5-10 times larger tuning slopes, with a moderate dispersion. These results highlight the importance of the stress direction to optimise QD response to applied strain, with implications both in static and dynamic regimes. As such, they are in particular relevant for the development of wavelength-tunable single photon sources or hybrid QD opto-mechanical systems
    corecore