92 research outputs found

    A Decade Of Malaria During Pregnancy In Brazil: What Has Been Done Concerning Prevention And Management.

    Get PDF
    In Brazil, malaria remains a disease of major epidemiological importance because of the high number of cases in the Amazonian Region. Plasmodium spp infections during pregnancy are a significant public health problem with substantial risks for the pregnant woman, the foetus and the newborn child. In Brazil, the control of malaria during pregnancy is primarily achieved by prompt and effective treatment of the acute episodes. Thus, to assure rapid diagnosis and treatment for pregnant women with malaria, one of the recommended strategy for low transmission areas by World Health Organization and as part of a strategy by the Ministry of Health, the National Malaria Control Program has focused on integrative measures with woman and reproductive health. Here, we discuss the approach for the prevention and management of malaria during pregnancy in Brazil over the last 10 years (2003-2012) using morbidity data from Malaria Health Information System. Improving the efficiency and quality of healthcare and education and the consolidation of prevention programmes will be challenges in the control of malaria during pregnancy in the next decade.109706-

    A decade of malaria during pregnancy in Brazil: what has been done concerning prevention and management

    Get PDF
    In Brazil, malaria remains a disease of major epidemiological importance because of the high number of cases in the Amazonian Region. Plasmodium spp infections during pregnancy are a significant public health problem with substantial risks for the pregnant woman, the foetus and the newborn child. In Brazil, the control of malaria during pregnancy is primarily achieved by prompt and effective treatment of the acute episodes. Thus, to assure rapid diagnosis and treatment for pregnant women with malaria, one of the recommended strategy for low transmission areas by World Health Organization and as part of a strategy by the Ministry of Health, the National Malaria Control Program has focused on integrative measures with woman and reproductive health. Here, we discuss the approach for the prevention and management of malaria during pregnancy in Brazil over the last 10 years (2003-2012) using morbidity data from Malaria Health Information System. Improving the efficiency and quality of healthcare and education and the consolidation of prevention programmes will be challenges in the control of malaria during pregnancy in the next decade1095706708CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE MINAS GERAIS - FAPEMIGFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPSem informaçãoSem informaçãoSem informaçãoSem informaçã

    Distinct placental malaria pathology caused by different Plasmodium berghei lines that fail to induce cerebral malaria in the C57BL/6 mouse

    Get PDF
    Background: Placental malaria (PM) is one major feature of malaria during pregnancy. A murine model of experimental PM using BALB/c mice infected with Plasmodium berghei ANKA was recently established, but there is need for additional PM models with different parasite/host combinations that allow to interrogate the involvement of specific host genetic factors in the placental inflammatory response to Plasmodium infection. Methods: A mid-term infection protocol was used to test PM induction by three P. berghei parasite lines, derived from the K173, NK65 and ANKA strains of P. berghei that fail to induce experimental cerebral malaria (ECM) in the susceptible C57BL/6 mice. Parasitaemia course, pregnancy outcome and placenta pathology induced by the three parasite lines were compared. Results: The three P. berghei lines were able to evoke severe PM pathology and poor pregnancy outcome features. The results indicate that parasite components required to induce PM are distinct from ECM. Nevertheless, infection with parasites of the ANKA Delta pm4 line, which lack expression of plasmepsin 4, displayed milder disease phenotypes associated with a strong innate immune response as compared to infections with NK65 and K173 parasites. Conclusions: Infection of pregnant C57BL/6 females with K173, NK65 and ANKA Delta pm4 P. berghei parasites provide experimental systems to identify host molecular components involved in PM pathogenesis mechanisms.Fundacao de Ciencia e Tecnologia (FCT), PortugalFundacao de Ciencia e Tecnologia (FCT), PortugalFCTFC

    IL-12p40 Deficiency Leads to Uncontrolled Trypanosoma cruzi Dissemination in the Spinal Cord Resulting in Neuronal Death and Motor Dysfunction

    Get PDF
    Chagas' disease is a protozoosis caused by Trypanosoma cruzi that frequently shows severe chronic clinical complications of the heart or digestive system. Neurological disorders due to T. cruzi infection are also described in children and immunosuppressed hosts. We have previously reported that IL-12p40 knockout (KO) mice infected with the T. cruzi strain Sylvio X10/4 develop spinal cord neurodegenerative disease. Here, we further characterized neuropathology, parasite burden and inflammatory component associated to the fatal neurological disorder occurring in this mouse model. Forelimb paralysis in infected IL-12p40KO mice was associated with 60% (p<0.05) decrease in spinal cord neuronal density, glutamate accumulation (153%, p<0.05) and strong demyelization in lesion areas, mostly in those showing heavy protein nitrosylation, all denoting a neurotoxic degenerative profile. Quantification of T. cruzi 18S rRNA showed that parasite burden was controlled in the spinal cord of WT mice, decreasing from the fifth week after infection, but progressive parasite dissemination was observed in IL-12p40KO cords concurrent with significant accumulation of the astrocytic marker GFAP (317.0%, p<0.01) and 8-fold increase in macrophages/microglia (p<0.01), 36.3% (p<0.01) of which were infected. Similarly, mRNA levels for CD3, TNF-alpha, IFN-gamma, iNOS, IL-10 and arginase I declined in WT spinal cords about the fourth or fifth week after infection, but kept increasing in IL-12p40KO mice. Interestingly, compared to WT tissue, lower mRNA levels for IFN-gamma were observed in the IL-12p40KO spinal cords up to the fourth week of infection. Together the data suggest that impairments of parasite clearance mechanisms in IL-12p40KO mice elicit prolonged spinal cord inflammation that in turn leads to irreversible neurodegenerative lesions.FAPESPFAPESPCAPESCAPESCNPqCNP

    Proteome-wide analysis of Trypanosoma cruzi exponential and stationary growth phases reveals a subcellular compartment-specific regulation

    Get PDF
    Trypanosoma cruzi, the etiologic agent of Chagas disease, cycles through different life stages characterized by defined molecular traits associated with the proliferative or differentiation state. In particular, T. cruzi epimastigotes are the replicative forms that colonize the intestine of the Triatomine insect vector before entering the stationary phase that is crucial for differentiation into metacyclic trypomastigotes, which are the infective forms of mammalian hosts. The transition from proliferative exponential phase to quiescent stationary phase represents an important step that recapitulates the early molecular events of metacyclogenesis, opening new possibilities for understanding this process. In this study, we report a quantitative shotgun proteomic analysis of the T. cruzi epimastigote in the exponential and stationary growth phases. More than 3000 proteins were detected and quantified, highlighting the regulation of proteins involved in different subcellular compartments. Ribosomal proteins were upregulated in the exponential phase, supporting the higher replication rate of this growth phase. Autophagy-related proteins were upregulated in the stationary growth phase, indicating the onset of the metacyclogenesis process. Moreover, this study reports the regulation of N-terminally acetylated proteins during growth phase transitioning, adding a new layer of regulation to this process. Taken together, this study reports a proteome-wide rewiring during T. cruzi transit from the replicative exponential phase to the stationary growth phase, which is the preparatory phase for differentiation

    Liver accumulation of Plasmodium chabaudi-infected red blood cells and modulation of regulatory T Cell and dendritic cell responses

    Get PDF
    It is postulated that accumulation of malaria-infected Red Blood Cells (iRBCs) in the liver could be a parasitic escape mechanism against full destruction by the host immune system. Therefore, we evaluated the in vivo mechanism of this accumulation and its potential immunological consequences. A massive liver accumulation of P. c. chabaudi AS-iRBCs (PciRBCs) was observed by intravital microscopy along with an over expression of ICAM-1 on day 7 of the infection, as measured by qRT-PCR. Phenotypic changes were also observed in regulatory T cells (Tregs) and dendritic cells (DCs) that were isolated from infected livers, which indicate a functional role for Tregs in the regulation of the liver inflammatory immune response. In fact, the suppressive function of liver-Tregs was in vitro tested, which demonstrated the capacity of these cells to suppress naive T cell activation to the same extent as that observed for spleen-Tregs. On the other hand, it is already known that CD4+ T cells isolated from spleens of protozoan parasite-infected mice are refractory to proliferate in vivo. In our experiments, we observed a similar lack of in vitro proliferative capacity in liver CD4+ T cells that were isolated on day 7 of infection. It is also known that nitric oxide and IL-10 are partially involved in acute phase immunosuppression; we found high expression levels of IL-10 and iNOS mRNA in day 7-infected livers, which indicates a possible role for these\ud molecules in the observed immune suppression. Taken together, these results indicate that malaria parasite accumulation within the liver could be an escape mechanism to avoid sterile immunity sponsored by a tolerogenic environment.CAPES-FCT grant 258/2010CAPES-IGC grant 04/2012Fundação de Apoio à Pesquisa do Estado de São Paulo – FAPESP grant 2009/53.889-0CAPES-FCT grant 258/2010FCT grant PTDC/EBB-BIO/115514/200

    Adverse pregnancy outcomes are associated with Plasmodium vivax malaria in a prospective cohort of women from the Brazilian Amazon.

    Get PDF
    BACKGROUND: Malaria in Brazil represents one of the highest percentages of Latin America cases, where approximately 84% of infections are attributed to Plasmodium (P.) vivax. Despite the high incidence, many aspects of gestational malaria resulting from P. vivax infections remain poorly studied. As such, we aimed to evaluate the consequences of P. vivax infections during gestation on the health of mothers and their neonates in an endemic area of the Amazon. METHODS AND FINDINGS: We have conducted an observational cohort study in Brazilian Amazon between January 2013 and April 2015. 600 pregnant women were enrolled and followed until delivery. After applying exclusion criteria, 329 mother-child pairs were included in the analysis. Clinical data regarding maternal infection, newborn's anthropometric measures, placental histopathological characteristics, and angiogenic and inflammatory factors were evaluated. The presence of plasma IgG against the P. vivax (Pv) MSP119 protein was used as marker of exposure and possible associations with pregnancy outcomes were analyzed. Multivariate logistic regression analysis revealed that P. vivax infections during the first trimester of pregnancy are associated with adverse gestational outcomes such as premature birth (adjusted odds ratio [aOR] 8.12, 95% confidence interval [95%CI] 2.69-24.54, p < 0.0001) and reduced head circumference (aOR 3.58, 95%CI 1.29-9.97, p = 0.01). Histopathology analysis showed marked differences between placentas from P. vivax-infected and non-infected pregnant women, especially regarding placental monocytes infiltrate. Placental levels of vasomodulatory factors such as angiopoietin-2 (ANG-2) and complement proteins such as C5a were also altered at delivery. Plasma levels of anti-PvMSP119 IgG in infected pregnant women were shown to be a reliable exposure marker; yet, with no association with improved pregnancy outcomes. CONCLUSIONS: This study indicates that P. vivax malaria during the first trimester of pregnancy represents a higher likelihood of subsequent poor pregnancy outcomes associated with marked placental histologic modification and angiogenic/inflammatory imbalance. Additionally, our findings support the idea that antibodies against PvMSP119 are not protective against poor pregnancy outcomes induced by P. vivax infections

    Oxidative Stress and Modification of Renal Vascular Permeability Are Associated with Acute Kidney Injury during P. berghei ANKA Infection

    Get PDF
    Malaria associated-acute kidney injury (AKI) is associated with 45% of mortality in adult patients hospitalized with severe form of the disease. However, the causes that lead to a framework of malaria-associated AKI are still poorly characterized. Some clinical studies speculate that oxidative stress products, a characteristic of Plasmodium infection, as well as proinflammatory response induced by the parasite are involved in its pathophysiology. Therefore, we aimed to investigate the development of malaria-associated AKI during infection by P. berghei ANKA, with special attention to the role played by the inflammatory response and the involvement of oxidative stress. For that, we took advantage of an experimental model of severe malaria that showed significant changes in the renal pathophysiology to investigate the role of malaria infection in the renal microvascular permeability and tissue injury. Therefore, BALB/c mice were infected with P. berghei ANKA. To assess renal function, creatinine, blood urea nitrogen, and ratio of proteinuria and creatininuria were evaluated. The products of oxidative stress, as well as cytokine profile were quantified in plasma and renal tissue. The change of renal microvascular permeability, tissue hypoxia and cellular apoptosis were also evaluated. Parasite infection resulted in renal dysfunction. Furthermore, we observed increased expression of adhesion molecule, proinflammatory cytokines and products of oxidative stress, associated with a decrease mRNA expression of HO-1 in kidney tissue of infected mice. The measurement of lipoprotein oxidizability also showed a significant increase in plasma of infected animals. Together, our findings support the idea that products of oxidative stress, as well as the immune response against the parasite are crucial to changes in kidney architecture and microvascular endothelial permeability of BALB/c mice infected with P. berghei ANKA.State of Sao Paulo Foundation for Research Support (FAPESP)State of Sao Paulo Foundation for Research Support (FAPESP) [07/07139-3, 10/52180-4, 12/02270-2]CAPESCAPESBrazilian Council of Scientific and Technologic Development (International Associated Laboratory of Renal Immunopathology, CNPq/Inserm)Brazilian Council of Scientific and Technologic Development (International Associated Laboratory of Renal Immunopathology, CNPq/Inserm)Complex Fluids INCT (FAPESP/CNPq)Complex Fluids INCT (FAPESP/CNPq
    corecore