71 research outputs found

    Emergency surgery in a severe penetrating skull base injury by a screwdriver: case report and literature review

    Get PDF
    BACKGROUND: Very few cases of severe penetrating injuries to the skull base with a seemingly innocuous object have been described in the literature. Of the cases reported, only ten involve a penetrating screwdriver. However, the choice of therapeutic management, whether it be emergency surgical or non-surgical removal of the penetrating object as well as the selected surgical approach remain quite controversial. CASE PRESENTATION: The authors describe the case of a severe penetrating skull base injury caused by a screwdriver, following an accidental fall from a ladder. The patient was admitted in Glasgow Coma Scale (GCS) 11 with a cerebrospinal fluid (CSF) leak in the right maxillary area. The tri-dimensional computerized tomography (3-D CT) scan revealed an oblique trajectory of the screwdriver shank through the skull base. The authors opted for an emergency surgical extraction of the object. A contra-lateral pterional approach was successfully performed and a two-year follow-up showed no neurological deficits. CONCLUSION: The reported case supports the choice of emergency surgical removal of the object in penetrating skull base injuries involving the anterior skull base with neurovascular lesions. Surgical aspects of the pterional approach, and in particular the left pterional approach as well as other cranio-facial approaches in severe penetrating skull base injuries are discussed

    Natural iminosugar (+)-lentiginosine inhibits ATPase and chaperone activity of Hsp90

    Get PDF
    Heat shock protein 90 (Hsp90) is a significant target in the development of rational cancer therapy due to its role at the crossroads of multiple signaling pathways associated with cell proliferation and cell viability. The relevance of Hsp90 as a therapeutic target for numerous diseases states has prompted the identification and optimization of novel Hsp90 inhibitors as an emerging therapeutic strategy. We performed a screening aimed to identify novel Hsp90 inhibitors among several natural compounds and we focused on the iminosugar (+)-lentiginosine, a natural amyloglucosidases inhibitor, for its peculiar bioactivity profile. Characterization of Hsp90 inhibition was performed using a panel of chemical and biological approaches, including limited proteolysis, biochemical and cellular assays. Our result suggested that the middle domain of Hsp90, as opposed to its ATP-binding pocket, is a promising binding site for new classes of Hsp90 inhibitors with multitarget anti-cancer potentia

    The Italian Rare Pancreatic Exocrine Cancer Initiative

    Get PDF
    INTRODUCTION: Exocrine pancreatic cancers include common type pancreatic ductal adenocarcinoma and cystic neoplasms, which account for 85% and 10% of cases, respectively. The remaining 5% are rare histotypes, comprising adenosquamous carcinoma, acinar cell carcinoma, signet ring cell carcinoma, medullary carcinoma, pancreatoblastoma, hepatoid carcinoma, undifferentiated carcinoma and its variant with osteoclast-like giant cells, solid pseudopapillary carcinoma, and carcinosarcoma. Due to their low incidence, little knowledge is available on their clinical and molecular features as well as on treatment choices. The national initiative presented here aims at the molecular characterization of series of rare histotypes for which therapeutic and follow-up data are available. METHODS: A nationwide Italian Rare Pancreatic Cancer (IRaPaCa) task force whose first initiative is a multicentric retrospective study involving 21 Italian cancer centers to retrieve histologic material and clinical and treatment data of at least 100 patients with rare exocrine pancreatic cancers has been created. After histologic revision by a panel of expert pathologists, DNA and RNA from paraffin tissues will be investigated by next-generation sequencing using molecular pathway-oriented and immune-oriented mutational and expression profiling panels constructed availing of the information from the International Cancer Genome Consortium. Bioinformatic analysis of data will drive validation studies by immunohistochemistry and in situ hybridization, as well as nanostring assays. CONCLUSIONS: We expect to gather novel data on rare pancreatic cancer types that will be useful to inform the design of therapeutic choices

    The STRIP instrument of the Large Scale Polarization Explorer: microwave eyes to map the Galactic polarized foregrounds

    Get PDF
    In this paper we discuss the latest developments of the STRIP instrument of the "Large Scale Polarization Explorer" (LSPE) experiment. LSPE is a novel project that combines ground-based (STRIP) and balloon-borne (SWIPE) polarization measurements of the microwave sky on large angular scales to attempt a detection of the "B-modes" of the Cosmic Microwave Background polarization. STRIP will observe approximately 25% of the Northern sky from the "Observatorio del Teide" in Tenerife, using an array of forty-nine coherent polarimeters at 43 GHz, coupled to a 1.5 m fully rotating crossed-Dragone telescope. A second frequency channel with six-elements at 95 GHz will be exploited as an atmospheric monitor. At present, most of the hardware of the STRIP instrument has been developed and tested at sub-system level. System-level characterization, starting in July 2018, will lead STRIP to be shipped and installed at the observation site within the end of the year. The on-site verification and calibration of the whole instrument will prepare STRIP for a 2-years campaign for the observation of the CMB polarization.Comment: 17 pages, 15 figures, proceedings of the SPIE Astronomical Telescopes + Instrumentation conference "Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX", on June 15th, 2018, Austin (TX

    A polycystic variant of a primary intracranial leptomeningeal astrocytoma: case report and literature review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Primary leptomeningeal astrocytomas are rare intracranial tumors. These tumors are believed to originate from cellular nests which migrate by means of aberration, ultimately settling in the leptomeningeal structure. They may occur in both solitary and diffuse forms. The literature reports only fifteen cases of solitary primary intracranial leptomeningeal astrocytomas.</p> <p>Case presentation</p> <p>The authors report the case of a seventy-eight year-old woman with a polycystic variant of a solitary primary intracranial leptomeningeal astrocytoma. The first neurological signs were seizures and aphasia. CT and MRI scans demonstrated a fronto-parietal polycystic tumor adherent to the sub arachnoid space. A left fronto-temporo-parietal craniotomy revealed a tight coalescence between the tumor and the arachnoid layer which appeared to wrap the mass entirely. Removal of the deeper solid part of the tumor resulted difficult due to the presence of both a high vascularity and a tight adherence between the tumor and the ventricular wall.</p> <p>Conclusion</p> <p>A new case of a solitary primitive intracranial leptomeningeal astrocytoma of a rare polycystic variant is reported. Clinical, surgical, pathologic and therapeutic aspects of this tumor are discussed.</p

    An explainable model of host genetic interactions linked to COVID-19 severity

    Get PDF
    We employed a multifaceted computational strategy to identify the genetic factors contributing to increased risk of severe COVID-19 infection from a Whole Exome Sequencing (WES) dataset of a cohort of 2000 Italian patients. We coupled a stratified k-fold screening, to rank variants more associated with severity, with the training of multiple supervised classifiers, to predict severity based on screened features. Feature importance analysis from tree-based models allowed us to identify 16 variants with the highest support which, together with age and gender covariates, were found to be most predictive of COVID-19 severity. When tested on a follow-up cohort, our ensemble of models predicted severity with high accuracy (ACC = 81.88%; AUCROC = 96%; MCC = 61.55%). Our model recapitulated a vast literature of emerging molecular mechanisms and genetic factors linked to COVID-19 response and extends previous landmark Genome-Wide Association Studies (GWAS). It revealed a network of interplaying genetic signatures converging on established immune system and inflammatory processes linked to viral infection response. It also identified additional processes cross-talking with immune pathways, such as GPCR signaling, which might offer additional opportunities for therapeutic intervention and patient stratification. Publicly available PheWAS datasets revealed that several variants were significantly associated with phenotypic traits such as "Respiratory or thoracic disease", supporting their link with COVID-19 severity outcome.A multifaceted computational strategy identifies 16 genetic variants contributing to increased risk of severe COVID-19 infection from a Whole Exome Sequencing dataset of a cohort of Italian patients

    The polymorphism L412F in TLR3 inhibits autophagy and is a marker of severe COVID-19 in males

    Get PDF
    The polymorphism L412F in TLR3 has been associated with several infectious diseases. However, the mechanism underlying this association is still unexplored. Here, we show that the L412F polymorphism in TLR3 is a marker of severity in COVID-19. This association increases in the sub-cohort of males. Impaired macroautophagy/autophagy and reduced TNF/TNFα production was demonstrated in HEK293 cells transfected with TLR3L412F-encoding plasmid and stimulated with specific agonist poly(I:C). A statistically significant reduced survival at 28 days was shown in L412F COVID-19 patients treated with the autophagy-inhibitor hydroxychloroquine (p = 0.038). An increased frequency of autoimmune disorders such as co-morbidity was found in L412F COVID-19 males with specific class II HLA haplotypes prone to autoantigen presentation. Our analyses indicate that L412F polymorphism makes males at risk of severe COVID-19 and provides a rationale for reinterpreting clinical trials considering autophagy pathways. Abbreviations: AP: autophagosome; AUC: area under the curve; BafA1: bafilomycin A1; COVID-19: coronavirus disease-2019; HCQ: hydroxychloroquine; RAP: rapamycin; ROC: receiver operating characteristic; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; TLR: toll like receptor; TNF/TNF-α: tumor necrosis factor

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe
    • …
    corecore