86 research outputs found

    Phytochemical Characterization and In Vitro Anti-Inflammatory, Antioxidant and Antimicrobial Activity of Combretum Collinum Fresen Leaves Extracts from Benin

    Get PDF
    Leaves from Combretum collinum Fresen (Combretaceae) are commonly used for the treatment of inflammatory conditions, wound healing and bacterial infections in traditional West African medicine. This research focuses on the characterization of the phenolic profile and lipophilic compounds of leaves extracts of C. collinum. Studies of the in vitro anti-inflammatory activity were performed in TNFα stimulated HaCaT cells and antibacterial activity was evaluated with agar well diffusion and microdilution assays. Antioxidant activity was determined by DPPH and ABTS assays and compared to standards. The phytochemical studies confirmed myricetin-3-O-rhamnoside and myricetin-3-O-glucoside as major components of the leaves extracts, each contributing significantly to the antioxidant activity of the hydrophilic extracts. GC-MS analysis identified 19 substances that were confirmed by comparison with spectral library data and authentic standards. Combretum collinum aqueous leaves extract decreased pro-inflammatory mediators in TNFα stimulated HaCaT cells. Further investigations showed that myricetin-3-O-rhamnoside has an anti-inflammatory effect on IL-8 secretion. In the antimicrobial screening, the largest inhibition zones were found against S. epidermidis, MRSA and S. aureus. MIC values resulted in 275.0 µg/mL for S. epidermidis and 385.5 µg/mL for MRSA. The in vitro anti-inflammatory, antibacterial and antioxidant activity supports topical use of C. collinum leaves extracts in traditional West African medicine

    Обоснование выбора электродвигателя и схемы его включения для системы точного поддержания скорости

    Get PDF
    Рассматривается применение в системах точного поддержания скорости различных синхронных электродвигателей. В результате сравнения рекомендовано применение в таких системах конденсаторного синхронного реактивного двигателя с трехфазными обмотками статора. Это позволяет упростить и удешевить систему точного электропривода и повысить ее надежность

    Distinct metabolomic and lipidomic profiles in serum samples of patients with primary sclerosing cholangitis

    Get PDF
    Intoduction: Identification of specific metabolome and lipidome profile of patients with primary sclerosing cholangitis (PSC) is crucial for diagnosis, targeted personalized therapy, and more accurate risk stratification. Methods: Nuclear magnetic resonance (NMR) spectroscopy revealed an altered metabolome and lipidome of 33 patients with PSC [24 patients with inflammatory bowel disease (IBD) and 9 patients without IBD] compared with 40 age-, sex-, and body mass index (BMI)-matched healthy controls (HC) as well as 64 patients with IBD and other extraintestinal manifestations (EIM) but without PSC. Results: In particular, higher concentrations of pyruvic acid and several lipoprotein subfractions were measured in PSC in comparison to HC. Of clinical relevance, a specific amino acid and lipid profile was determined in PSC compared with IBD and other EIM. Discussion: These results have the potential to improve diagnosis by differentiating PSC patients from HC and those with IBD and EIM

    Distribution Analysis of Hydrogenases in Surface Waters of Marine and Freshwater Environments

    Get PDF
    Background Surface waters of aquatic environments have been shown to both evolve and consume hydrogen and the ocean is estimated to be the principal natural source. In some marine habitats, H2 evolution and uptake are clearly due to biological activity, while contributions of abiotic sources must be considered in others. Until now the only known biological process involved in H2 metabolism in marine environments is nitrogen fixation. Principal Findings We analyzed marine and freshwater environments for the presence and distribution of genes of all known hydrogenases, the enzymes involved in biological hydrogen turnover. The total genomes and the available marine metagenome datasets were searched for hydrogenase sequences. Furthermore, we isolated DNA from samples from the North Atlantic, Mediterranean Sea, North Sea, Baltic Sea, and two fresh water lakes and amplified and sequenced part of the gene encoding the bidirectional NAD(P)-linked hydrogenase. In 21% of all marine heterotrophic bacterial genomes from surface waters, one or several hydrogenase genes were found, with the membrane-bound H2 uptake hydrogenase being the most widespread. A clear bias of hydrogenases to environments with terrestrial influence was found. This is exemplified by the cyanobacterial bidirectional NAD(P)-linked hydrogenase that was found in freshwater and coastal areas but not in the open ocean. Significance This study shows that hydrogenases are surprisingly abundant in marine environments. Due to its ecological distribution the primary function of the bidirectional NAD(P)-linked hydrogenase seems to be fermentative hydrogen evolution. Moreover, our data suggests that marine surface waters could be an interesting source of oxygen-resistant uptake hydrogenases. The respective genes occur in coastal as well as open ocean habitats and we presume that they are used as additional energy scavenging devices in otherwise nutrient limited environments. The membrane-bound H2-evolving hydrogenases might be useful as marker for bacteria living inside of marine snow particles

    State of the climate in 2018

    Get PDF
    In 2018, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—continued their increase. The annual global average carbon dioxide concentration at Earth’s surface was 407.4 ± 0.1 ppm, the highest in the modern instrumental record and in ice core records dating back 800 000 years. Combined, greenhouse gases and several halogenated gases contribute just over 3 W m−2 to radiative forcing and represent a nearly 43% increase since 1990. Carbon dioxide is responsible for about 65% of this radiative forcing. With a weak La Niña in early 2018 transitioning to a weak El Niño by the year’s end, the global surface (land and ocean) temperature was the fourth highest on record, with only 2015 through 2017 being warmer. Several European countries reported record high annual temperatures. There were also more high, and fewer low, temperature extremes than in nearly all of the 68-year extremes record. Madagascar recorded a record daily temperature of 40.5°C in Morondava in March, while South Korea set its record high of 41.0°C in August in Hongcheon. Nawabshah, Pakistan, recorded its highest temperature of 50.2°C, which may be a new daily world record for April. Globally, the annual lower troposphere temperature was third to seventh highest, depending on the dataset analyzed. The lower stratospheric temperature was approximately fifth lowest. The 2018 Arctic land surface temperature was 1.2°C above the 1981–2010 average, tying for third highest in the 118-year record, following 2016 and 2017. June’s Arctic snow cover extent was almost half of what it was 35 years ago. Across Greenland, however, regional summer temperatures were generally below or near average. Additionally, a satellite survey of 47 glaciers in Greenland indicated a net increase in area for the first time since records began in 1999. Increasing permafrost temperatures were reported at most observation sites in the Arctic, with the overall increase of 0.1°–0.2°C between 2017 and 2018 being comparable to the highest rate of warming ever observed in the region. On 17 March, Arctic sea ice extent marked the second smallest annual maximum in the 38-year record, larger than only 2017. The minimum extent in 2018 was reached on 19 September and again on 23 September, tying 2008 and 2010 for the sixth lowest extent on record. The 23 September date tied 1997 as the latest sea ice minimum date on record. First-year ice now dominates the ice cover, comprising 77% of the March 2018 ice pack compared to 55% during the 1980s. Because thinner, younger ice is more vulnerable to melting out in summer, this shift in sea ice age has contributed to the decreasing trend in minimum ice extent. Regionally, Bering Sea ice extent was at record lows for almost the entire 2017/18 ice season. For the Antarctic continent as a whole, 2018 was warmer than average. On the highest points of the Antarctic Plateau, the automatic weather station Relay (74°S) broke or tied six monthly temperature records throughout the year, with August breaking its record by nearly 8°C. However, cool conditions in the western Bellingshausen Sea and Amundsen Sea sector contributed to a low melt season overall for 2017/18. High SSTs contributed to low summer sea ice extent in the Ross and Weddell Seas in 2018, underpinning the second lowest Antarctic summer minimum sea ice extent on record. Despite conducive conditions for its formation, the ozone hole at its maximum extent in September was near the 2000–18 mean, likely due to an ongoing slow decline in stratospheric chlorine monoxide concentration. Across the oceans, globally averaged SST decreased slightly since the record El Niño year of 2016 but was still far above the climatological mean. On average, SST is increasing at a rate of 0.10° ± 0.01°C decade−1 since 1950. The warming appeared largest in the tropical Indian Ocean and smallest in the North Pacific. The deeper ocean continues to warm year after year. For the seventh consecutive year, global annual mean sea level became the highest in the 26-year record, rising to 81 mm above the 1993 average. As anticipated in a warming climate, the hydrological cycle over the ocean is accelerating: dry regions are becoming drier and wet regions rainier. Closer to the equator, 95 named tropical storms were observed during 2018, well above the 1981–2010 average of 82. Eleven tropical cyclones reached Saffir–Simpson scale Category 5 intensity. North Atlantic Major Hurricane Michael’s landfall intensity of 140 kt was the fourth strongest for any continental U.S. hurricane landfall in the 168-year record. Michael caused more than 30 fatalities and 25billion(U.S.dollars)indamages.InthewesternNorthPacific,SuperTyphoonMangkhutledto160fatalitiesand25 billion (U.S. dollars) in damages. In the western North Pacific, Super Typhoon Mangkhut led to 160 fatalities and 6 billion (U.S. dollars) in damages across the Philippines, Hong Kong, Macau, mainland China, Guam, and the Northern Mariana Islands. Tropical Storm Son-Tinh was responsible for 170 fatalities in Vietnam and Laos. Nearly all the islands of Micronesia experienced at least moderate impacts from various tropical cyclones. Across land, many areas around the globe received copious precipitation, notable at different time scales. Rodrigues and Réunion Island near southern Africa each reported their third wettest year on record. In Hawaii, 1262 mm precipitation at Waipā Gardens (Kauai) on 14–15 April set a new U.S. record for 24-h precipitation. In Brazil, the city of Belo Horizonte received nearly 75 mm of rain in just 20 minutes, nearly half its monthly average. Globally, fire activity during 2018 was the lowest since the start of the record in 1997, with a combined burned area of about 500 million hectares. This reinforced the long-term downward trend in fire emissions driven by changes in land use in frequently burning savannas. However, wildfires burned 3.5 million hectares across the United States, well above the 2000–10 average of 2.7 million hectares. Combined, U.S. wildfire damages for the 2017 and 2018 wildfire seasons exceeded $40 billion (U.S. dollars)

    Environmentalism in the EU-28 context: the impact of governance quality on environmental energy efficiency

    Get PDF
    Environmental policies are a significant cornerstone of a developed economy, but the question that arises is whether such policies lead to a sustainable growth path. It is clear that the energy sector plays a pivotal role in environmental policies, and although the current literature has focused on examining the link between energy consumption and economic growth through an abundance of studies, it does not explicitly consider the role of institutional or governance quality variables in the process. Both globalization and democracy are important drivers of sustainability, while environmentalism is essential for the objective of gaining a “better world.” Governance quality is expected to be the key, not only for economic purposes but also for the efficiency of environmental policies. To that end, the analysis in this paper explores the link between governance quality and energy efficiency for the EU-28 countries, spanning the period 1995 to 2014. The findings document that there is a nexus between energy efficiency and income they move together: the most efficient countries are in the group with higher GDP per capita. Furthermore, the results show that governance quality is an important driver of energy efficiency and, hence, of environmental policies.University of Granad

    O uso do plasma convalescente para tratamento de pacientes graves com covid-19 : avaliação das características dos doadores

    Get PDF
    corecore