725 research outputs found

    Vegetation's Red Edge: A Possible Spectroscopic Biosignature of Extraterrestrial Plants

    Full text link
    Earth's deciduous plants have a sharp order-of-magnitude increase in leaf reflectance between approximately 700 and 750 nm wavelength. This strong reflectance of Earth's vegetation suggests that surface biosignatures with sharp spectral features might be detectable in the spectrum of scattered light from a spatially unresolved extrasolar terrestrial planet. We assess the potential of Earth's step-function-like spectroscopic feature, referred to as the "red edge", as a tool for astrobiology. We review the basic characteristics and physical origin of the red edge and summarize its use in astronomy: early spectroscopic efforts to search for vegetation on Mars and recent reports of detection of the red edge in the spectrum of Earthshine (i.e., the spatially integrated scattered light spectrum of Earth). We present Earthshine observations from Apache Point Observatory to emphasize that time variability is key to detecting weak surface biosignatures such as the vegetation red edge. We briefly discuss the evolutionary advantages of vegetation's red edge reflectance, and speculate that while extraterrestrial "light harvesting organisms" have no compelling reason to display the exact same red edge feature as terrestrial vegetation, they might have similar spectroscopic features at different wavelengths than terrestrial vegetation. This implies that future terrestrial-planet-characterizing space missions should obtain data that allow time-varying, sharp spectral features at unknown wavelengths to be identified. We caution that some mineral reflectance edges are similar in slope and strength to vegetation's red edge (albeit at different wavelengths); if an extrasolar planet reflectance edge is detected care must be taken with its interpretation.Comment: 19 pages, 6 figures, to appear in Astrobiolog

    Stationary solutions of the one-dimensional nonlinear Schroedinger equation: I. Case of repulsive nonlinearity

    Full text link
    All stationary solutions to the one-dimensional nonlinear Schroedinger equation under box and periodic boundary conditions are presented in analytic form. We consider the case of repulsive nonlinearity; in a companion paper we treat the attractive case. Our solutions take the form of stationary trains of dark or grey density-notch solitons. Real stationary states are in one-to-one correspondence with those of the linear Schr\"odinger equation. Complex stationary states are uniquely nonlinear, nodeless, and symmetry-breaking. Our solutions apply to many physical contexts, including the Bose-Einstein condensate and optical pulses in fibers.Comment: 11 pages, 7 figures -- revised versio

    Glide and Superclimb of Dislocations in Solid 4^4He

    Full text link
    Glide and climb of quantum dislocations under finite external stress, variation of chemical potential and bias (geometrical slanting) in Peierls potential are studied by Monte Carlo simulations of the effective string model. We treat on unified ground quantum effects at finite temperatures TT. Climb at low TT is assisted by superflow along dislocation core -- {\it superclimb}. Above some critical stress avalanche-type creation of kinks is found. It is characterized by hysteretic behavior at low TT. At finite biases gliding dislocation remains rough even at lowest TT -- the behavior opposite to non-slanted dislocations. In contrast to glide, superclimb is characterized by quantum smooth state at low temperatures even for finite bias. In some intermediate TT-range giant values of the compressibility as well as non-Luttinger type behavior of the core superfluid are observed.Comment: Updated version submitted to JLTP as QFS2010 proceedings; 11 pages, 6 figure

    Nanofabrication by magnetic focusing of supersonic beams

    Full text link
    We present a new method for nanoscale atom lithography. We propose the use of a supersonic atomic beam, which provides an extremely high-brightness and cold source of fast atoms. The atoms are to be focused onto a substrate using a thin magnetic film, into which apertures with widths on the order of 100 nm have been etched. Focused spot sizes near or below 10 nm, with focal lengths on the order of 10 microns, are predicted. This scheme is applicable both to precision patterning of surfaces with metastable atomic beams and to direct deposition of material.Comment: 4 pages, 3 figure

    Electron-Electron Interactions and the Hall-Insulator

    Full text link
    Using the Kubo formula, we show explicitly that a non-interacting electron system can not behave like a Hall-insulator, {\it ie.,} a DC resistivity matrix ρxx\rho_{xx}\rightarrow\infty and ρxy=\rho_{xy}=finite in the zero temperature limit, as has been observed recently in experiment. For a strongly interacting electron system in a magnetic field, we illustrate, by constructing a specific form of correlations between mobile and localized electrons, that the Hall resistivity can approximately equal to its classical value. A Hall-insulator is realized in this model when the density of mobile electrons becomes vanishingly small. It is shown that in non-interacting electron systems, the zero-temperature frequency-dependent conductacnce generally does not give the DC conductance.Comment: 11 pages, RevTeX3.

    Exawatt-Zettawatt Pulse Generation and Applications

    Full text link
    A new amplification method, weaving the three basic compression techniques, Chirped Pulse Amplification (CPA), Optical Parametric Chirped Pulse Amplification (OPCPA) and Plasma Compression by Backward Raman Amplification (BRA) in plasma, is proposed. It is called C3 for Cascaded Conversion Compression. It has the capability to compress with good efficiency kilojoule to megajoule, nanosecond laser pulses into femtosecond pulses, to produce exawatt and beyond peak power. In the future, C3 could be used at large-scale facilities such as the National Ignition Facility (NIF) or the Laser Megajoule (LMJ) and open the way to zettawatt level pulses. The beam will be focused to a wavelength spot size with a f#1. The very small beam size, i.e. few centimeters, along with the low laser repetition rate laser system will make possible the use of inexpensive, precision, disposable optics. The resulting intensity will approach the Schwinger value, thus opening up new possibilities in fundamental physics.Comment: 13 pages, 4 figure

    Energy, interaction, and photoluminescence of spin-reversed quasielectrons in fractional quantum Hall systems

    Full text link
    The energy and photoluminescence spectra of a two-dimensional electron gas in the fractional quantum Hall regime are studied. The single-particle properties of reversed-spin quasielectrons (QER_{\rm R}'s) as well as the pseudopotentials of their interaction with one another and with Laughlin quasielectrons (QE's) and quasiholes (QH's) are calculated. Based on the short-range character of the QER_{\rm R}--QER_{\rm R} and QER_{\rm R}--QE repulsion, the partially unpolarized incompressible states at the filling factors ν=411\nu={4\over11} and 513{5\over13} are postulated within Haldane's hierarchy scheme. To describe photoluminescence, the family of bound h(h(QER)n_{\rm R})_n states of a valence hole hh and nn QER_{\rm R}'s are predicted in analogy to the found earlier fractionally charged excitons hhQEn_n. The binding energy and optical selection rules for both families are compared. The hhQER_{\rm R} is found radiative in contrast to the dark hhQE, and the h(h(QER)2_{\rm R})_2 is found non-radiative in contrast to the bright hhQE2_2.Comment: 9 pages, 6 figure

    Relic neutrino masses and the highest energy cosmic rays

    Get PDF
    We consider the possibility that a large fraction of the ultrahigh energy cosmic rays are decay products of Z bosons which were produced in the scattering of ultrahigh energy cosmic neutrinos on cosmological relic neutrinos. We compare the observed ultrahigh energy cosmic ray spectrum with the one predicted in the above Z-burst scenario and determine the required mass of the heaviest relic neutrino as well as the necessary ultrahigh energy cosmic neutrino flux via a maximum likelihood analysis. We show that the value of the neutrino mass obtained in this way is fairly robust against variations in presently unknown quantities, like the amount of neutrino clustering, the universal radio background, and the extragalactic magnetic field, within their anticipated uncertainties. Much stronger systematics arises from different possible assumptions about the diffuse background of ordinary cosmic rays from unresolved astrophysical sources. In the most plausible case that these ordinary cosmic rays are protons of extragalactic origin, one is lead to a required neutrino mass in the range 0.08 eV - 1.3 eV at the 68 % confidence level. This range narrows down considerably if a particular universal radio background is assumed, e.g. to 0.08 eV - 0.40 eV for a large one. The required flux of ultrahigh energy cosmic neutrinos near the resonant energy should be detected in the near future by AMANDA, RICE, and the Pierre Auger Observatory, otherwise the Z-burst scenario will be ruled out.Comment: 19 pages, 22 figures, REVTeX

    Functional strength training and movement performance therapy produce analogous improvement in sit-to-stand early after stroke:Early phase randomised controlled trial

    Get PDF
    Objectives: Restoring independence in the sit-to-stand (STS) task is an important objective for stroke rehabilitation. It is not known if a particular intervention, strength training or therapy focused on movement performance is more likely to improve STS recovery. This study aimed to compare STS outcomes from functional strength training, movement performance therapy and conventional therapy. Design: Randomised controlled trial. Setting: Acute stroke units. Participants: Medically well patients (n=93) with recent (<42 days) stroke. The mean age of patients was 68.8 years, mean time post ictus was 33.5 days, 54 (58%) were male, 20 showed neglect (22%) and 37 (40%) had a left-sided brain lesion. Interventions: Six weeks of either conventional therapy, functional strength training or movement performance therapy. Subjects were allocated to groups on a random basis. Main outcome measures: STS ability, timing, symmetry, co-ordination, smoothness and knee velocity were measured at baseline, outcome (after 6 weeks of intervention) and followup (3 months after outcome). Results: No significant differences were found between the groups. All three groups improved their STS ability, with 88% able to STS at follow-up compared with 56% at baseline. Few differences were noted in quality of movement, with only symmetry when rising showing significantly greater improvement in the movement performance therapy group; this benefit was not evident at follow-up. Conclusions: Recovery of the STS movement is consistently good during stroke rehabilitation, irrespective of the type of therapy experienced. Changes in quality of movement did not differ according to group allocation, indicating that the type of therapy is less important

    CATALISE: A multinational and multidisciplinary Delphi consensus study. Identifying language impairments in children

    Get PDF
    © 2016 Bishop et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Delayed or impaired language development is a common developmental concern, yet there is little agreement about the criteria used to identify and classify language impairments in children. Children\u27s language difficulties are at the interface between education, medicine and the allied professions, who may all adopt different approaches to conceptualising them. Our goal in this study was to use an online Delphi technique to see whether it was possible to achieve consensus among professionals on appropriate criteria for identifying children who might benefit from specialist services. We recruited a panel of 59 experts representing ten disciplines (including education, psychology, speech-language therapy/pathology, paediatrics and child psychiatry) from English-speaking countries (Australia, Canada, Ireland, New Zealand, United Kingdom and USA). The starting point for round 1 was a set of 46 statements based on articles and commentaries in a special issue of a journal focusing on this topic. Panel members rated each statement for both relevance and validity on a sevenpoint scale, and added free text comments. These responses were synthesised by the first two authors, who then removed, combined or modified items with a view to improving consensus. The resulting set of statements was returned to the panel for a second evaluation (round 2). Consensus (percentage reporting \u27agree\u27 or \u27strongly agree\u27) was at least 80 percent for 24 of 27 round 2 statements, though many respondents qualified their response with written comments. These were again synthesised by the first two authors. The resulting consensus statement is reported here, with additional summary of relevant evidence, and a concluding commentary on residual disagreements and gaps in the evidence base
    corecore