1,143 research outputs found

    Simultaneous Metabolic Quantification to Improve Mechanistic Understanding of Nutrient Function and Efficacy

    Get PDF

    Folate and choline: does it take two to tango in early programming of disease?

    Get PDF
    Background: The early life period marks a critical time during which the health trajectory of offspring can be shaped by external influences including maternal nutrition. Folate and choline are water-soluble micronutrients important for fetal development and involved in one-carbon metabolism. Intakes above and below the recommendations commonly occur for both of these nutrients including over-consumption of synthetic folic acid due to widespread vitamin supplement uses and discretionary fortification practices, whereas choline is under-consumed by a majority of the populations including pregnant women. Despite these intake patterns, long-term impact on offspring health is largely unknown. Moreover, limited attention has been on the combined effects of folate and choline despite being metabolically interrelated as methyl nutrients. This review summarizes evidence from animal models and human studies investigating the role of inadequate or supplemental maternal intakes of folic acid, choline and combined effects of folic acid and choline as modulators of health and disease in offspring. With the recent rise in the prevalence of obesity and metabolic diseases, our primary measures of interest were metabolic outcomes. Summary: Studies examining the role of maternal folate and/or choline in metabolic phenotypes of offspring have mostly been conducted in animal models with a limited number of reports that consider folate and choline together. Interdependent relationship between folate and choline has been demonstrated in studies where a deficiency in one leads to metabolic aberrations in another. Both deficient and excess maternal intakes of folic acid (in varying doses) have been shown to increase risk of obesity and characteristics of the metabolic syndrome in offspring but these findings were restricted to animal studies. Potential metabolic benefits of choline have been suggested in the presence of obesogenic environment but human data were sparse. An imbalanced intake of high folic acid and inadequate choline in the gestational diet created adverse consequences consistent with the obesogenic phenotypes whereas narrowing this imbalance with high choline blocked these effects. Mechanisms by which maternal folate and/or choline influence offspring outcomes may involve epigenetic modification of gene expression with DNA methylation that can be altered globally and gene-specifically. However, the effects of epigenetic programming were inconsistent, as compensatory changes in metabolic products may occur and other contributors including the gut microbiota may provide additional insights into the mechanisms. Key Messages: Folate and/or choline can impact offspring long-term health, with metabolic consequences that may arise from imbalances between folic acid and choline intakes. However, there is a paucity of mechanistic understanding as various contributors influence programming effects including those beyond epigenetics. As folate and choline are metabolically interrelated, future studies need to consider both nutrients to better elucidate metabolic programming of health and disease

    Effect of Choline Forms and Gut Microbiota Composition on Trimethylamine-N-Oxide Response in Healthy Men

    Get PDF
    Background: Trimethylamine-N-oxide (TMAO), a choline-derived gut microbiota-dependent metabolite, is a newly recognized risk marker for cardiovascular disease. We sought to determine: (1) TMAO response to meals containing free versus lipid-soluble choline and (2) effects of gut microbiome on TMAO response. Methods: In a randomized, controlled, double-blinded, crossover study, healthy men (n = 37) were provided meals containing 600 mg choline either as choline bitartrate or phosphatidylcholine, or no choline control. Results: Choline bitartrate yielded three-times greater plasma TMAO AUC (p = 0.01) and 2.5-times greater urinary TMAO change from baseline (p = 0.01) compared to no choline and phosphatidylcholine. Gut microbiota composition differed (permutational multivariate analysis of variance, PERMANOVA; p = 0.01) between high-TMAO producers (with ≥40% increase in urinary TMAO response to choline bitartrate) and low-TMAO producers (with \u3c40% increase in TMAO response). High-TMAO producers had more abundant lineages of Clostridium from Ruminococcaceae and Lachnospiraceae compared to low-TMAO producers (analysis of composition of microbiomes, ANCOM; p \u3c 0.05). Conclusion: Given that phosphatidylcholine is the major form of choline in food, the absence of TMAO elevation with phosphatidylcholine counters arguments that phosphatidylcholine should be avoided due to TMAO-producing characteristics. Further, development of individualized dietary recommendations based on the gut microbiome may be effective in reducing disease risk

    Alpha-Amino-Beta-Carboxy-Muconate-Semialdehyde Decarboxylase Controls Dietary Niacin Requirements for NAD+ Synthesis

    Get PDF
    NAD+ is essential for redox reactions in energy metabolism and necessary for DNA repair and epigenetic modification. Humans require sufficient amounts of dietary niacin (nicotinic acid, nicotinamide, and nicotinamide riboside) for adequate NAD+ synthesis. In contrast, mice easily generate sufficient NAD+ solely from tryptophan through the kynurenine pathway. We show that transgenic mice with inducible expression of human alpha-amino-beta-carboxy-muconate-semialdehyde decarboxylase (ACMSD) become niacin dependent similar to humans when ACMSD expression is high. On niacin-free diets, these acquired niacin dependency (ANDY) mice developed reversible, mild-to-severe NAD+ deficiency, depending on the nutrient composition of the diet. NAD deficiency in mice contributed to behavioral and health changes that are reminiscent of human niacin deficiency. This study shows that ACMSD is a key regulator of mammalian dietary niacin requirements and NAD+ metabolism and that the ANDY mouse represents a versatile platform for investigating pathologies linked to low NAD+ levels in aging and neurodegenerative diseases

    Emerging Priorities for Microbiome Research

    Get PDF
    Microbiome research has increased dramatically in recent years, driven by advances in technology and significant reductions in the cost of analysis. Such research has unlocked a wealth of data, which has yielded tremendous insight into the nature of the microbial communities, including their interactions and effects, both within a host and in an external environment as part of an ecological community. Understanding the role of microbiota, including their dynamic interactions with their hosts and other microbes, can enable the engineering of new diagnostic techniques and interventional strategies that can be used in a diverse spectrum of fields, spanning from ecology and agriculture to medicine and from forensics to exobiology. From June 19–23 in 2017, the NIH and NSF jointly held an Innovation Lab on Quantitative Approaches to Biomedical Data Science Challenges in our Understanding of the Microbiome. This review is inspired by some of the topics that arose as priority areas from this unique, interactive workshop. The goal of this review is to summarize the Innovation Lab’s findings by introducing the reader to emerging challenges, exciting potential, and current directions in microbiome research. The review is broken into five key topic areas: (1) interactions between microbes and the human body, (2) evolution and ecology of microbes, including the role played by the environment and microbe-microbe interactions, (3) analytical and mathematical methods currently used in microbiome research, (4) leveraging knowledge of microbial composition and interactions to develop engineering solutions, and (5) interventional approaches and engineered microbiota that may be enabled by selectively altering microbial composition. As such, this review seeks to arm the reader with a broad understanding of the priorities and challenges in microbiome research today and provide inspiration for future investigation and multi-disciplinary collaboration

    High Folic Acid Intake during Pregnancy Lowers Body Weight and Reduces Femoral Area and Strength in Female Rat Offspring

    Get PDF
    Rats fed gestational diets high in multivitamin or folate produce offspring of altered phenotypes. We hypothesized that female rat offspring born to dams fed a gestational diet high in folic acid (HFol) have compromised bone health and that feeding the offspring the same HFol diet attenuates these effects. Pregnant rats were fed diets with either recommended folic acid (RFol) or 10-fold higher folic acid (HFol) amounts. Female offspring were weaned to either the RFol or HFol diet for 17 weeks. HFol maternal diet resulted in lower offspring body weights (6%, P=0.03) and, after adjusting for body weight and femoral length, smaller femoral area (2%, P=0.03), compared to control diet. After adjustments, HFol pup diet resulted in lower mineral content (7%, P=0.01) and density (4%, P=0.002) of lumbar vertebra 4 without differences in strength. An interaction between folate content of the dam and pup diets revealed that a mismatch resulted in lower femoral peak load strength (P=0.01) and stiffness (P=0.002). However, the match in folate content failed to prevent lower weight gain. In conclusion, HFol diets fed to rat dams and their offspring affect area and strength of femurs and mineral quantity but not strength of lumbar vertebrae in the offspring

    Gravitational Waves From Known Pulsars: Results From The Initial Detector Era

    Get PDF
    We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyAustralian Research CouncilInternational Science Linkages program of the Commonwealth of AustraliaCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Economia y CompetitividadConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsNetherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFOCUS Programme of Foundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space AdministrationOTKA of HungaryLyon Institute of Origins (LIO)National Research Foundation of KoreaIndustry CanadaProvince of Ontario through the Ministry of Economic Development and InnovationNational Science and Engineering Research Council CanadaCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationAstronom

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Swift follow-up observations of candidate gravitational-wave transient events

    Get PDF
    We present the first multi-wavelength follow-up observations of two candidate gravitational-wave (GW) transient events recorded by LIGO and Virgo in their 2009-2010 science run. The events were selected with low latency by the network of GW detectors and their candidate sky locations were observed by the Swift observatory. Image transient detection was used to analyze the collected electromagnetic data, which were found to be consistent with background. Off-line analysis of the GW data alone has also established that the selected GW events show no evidence of an astrophysical origin; one of them is consistent with background and the other one was a test, part of a "blind injection challenge". With this work we demonstrate the feasibility of rapid follow-ups of GW transients and establish the sensitivity improvement joint electromagnetic and GW observations could bring. This is a first step toward an electromagnetic follow-up program in the regime of routine detections with the advanced GW instruments expected within this decade. In that regime multi-wavelength observations will play a significant role in completing the astrophysical identification of GW sources. We present the methods and results from this first combined analysis and discuss its implications in terms of sensitivity for the present and future instruments.Comment: Submitted for publication 2012 May 25, accepted 2012 October 25, published 2012 November 21, in ApJS, 203, 28 ( http://stacks.iop.org/0067-0049/203/28 ); 14 pages, 3 figures, 6 tables; LIGO-P1100038; Science summary at http://www.ligo.org/science/Publication-S6LVSwift/index.php ; Public access area to figures, tables at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p110003
    corecore