244 research outputs found

    Synchronisation of egg hatching of brown hairstreak (Thecla betulae) and budburst of blackthorn (Prunus spinosa) in a warmer future

    Get PDF
    Synchronisation of the phenology of insect herbivores and their larval food plant is essential for the herbivores’ fitness. The monophagous brown hairstreak (Thecla betulae) lays its eggs during summer, hibernates as an egg, and hatches in April or May in the Netherlands. Its main larval food plant blackthorn (Prunus spinosa) flowers in early spring, just before the leaves appear. As soon as the Blackthorn opens its buds, and this varies with spring temperatures, food becomes available for the brown hairstreak. However, the suitability of the leaves as food for the young caterpillars is expected to decrease rapidly. Therefore, the timing of egg hatch is an important factor for larval growth. This study evaluates food availability for brown hairstreak at different temperatures. Egg hatch and budburst were monitored from 2004 to 2008 at different sites in the Netherlands. Results showed ample food availability at all monitored temperatures and sites but the degree of synchrony varied strongly with spring temperatures. To further study the effect of temperature on synchronisation, an experiment using normal temperatures of a reference year (T) and temperatures of T + 5°C was carried out in climate chambers. At T + 5°C, both budburst and egg hatch took place about 20 days earlier and thus, on average, elevated temperature did not affect synchrony. However, the total period of budburst was 11 days longer, whereas the period of egg hatching was 3 days shorter. The implications for larval growth by the brown hairstreak under a warmer climate are considered.

    Mosquito Feeding Affects Larval Behaviour and Development in a Moth

    Get PDF
    Organisms are attacked by different natural enemies present in their habitat. While enemies such as parasitoids and predators will kill their hosts/preys when they successfully attack them, enemies such as micropredators will not entirely consume their prey. However, they can still have important consequences on the performance and ecology of the prey, such as reduced growth, increased emigration, disease transmission

    Targeted delivery of a designed sTRAIL mutant results in superior apoptotic activity towards EGFR-positive tumor cells

    Get PDF
    Previously, we have shown that epidermal growth factor receptor (EGFR)-selective delivery of soluble tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL), by genetic fusion to antibody fragment scFv425, enhances the tumor-selective pro-apoptotic activity of sTRAIL. Insight into the respective contribution of the agonistic receptors TRAIL-R1 and TRAIL-R2 to TRAIL-induced apoptosis may provide a rational approach to further optimize TRAIL-based therapy. Recently, this issue has been investigated using sTRAIL mutants designed to selectively bind to either receptor. However, the relative contribution of the respective TRAIL receptors, in particular TRAIL-R1, in TRAIL signaling is still unresolved. Here, we fused scFv425 to designed sTRAIL mutant sTRAILmR1–5, reported to selectively activate TRAIL-R1, and investigated the therapeutic apoptotic activity of this novel fusion protein. EGFR-specific binding of scFv425:sTRAILmR1–5 potently induced apoptosis, which was superior to the apoptotic activity of scFv425:sTRAIL-wt and a nontargeted MOCK-scFv:sTRAILmR1–5. During cotreatment with cisplatin or the histone deacetylase inhibitor valproic acid, scFv425:sTRAILmR1–5 retained its superior pro-apoptotic activity compared to scFv425:sTRAIL-wt. However, in catching-type Enzyme-Linked ImmunoSorbent Assays with TRAIL-R1:Fc and TRAIL-R2:Fc, scFv425:sTRAILmR1–5 was found to not only bind to TRAIL-R1 but also to TRAIL-R2. Binding to TRAIL-R2 also had functional consequences because the apoptotic activity of scFv425:sTRAILmR1–5 was strongly inhibited by a TRAIL-R2 blocking monoclonal antibody. Moreover, scFv425:sTRAILmR1–5 retained apoptotic activity upon selective knockdown of TRAIL-R1 using small inhibitory RNA. Collectively, these data indicate that both agonistic TRAIL receptors are functionally involved in TRAIL signaling by scFv425:sTRAILmR1–5 in solid tumor cells. Moreover, the superior target cell-restricted apoptotic activity of scFv425:sTRAILmR1–5 indicates its therapeutic potential for EGFR-positive solid tumors

    Temperature Affects the Tripartite Interactions between Bacteriophage WO, Wolbachia, and Cytoplasmic Incompatibility

    Get PDF
    Wolbachia infections are a model for understanding intracellular, bacterial symbioses. While the symbiosis is often studied from a binary perspective of host and bacteria, it is increasingly apparent that additional trophic levels can influence the symbiosis. For example, Wolbachia in arthropods harbor a widespread temperate bacteriophage, termed WO, that forms virions and rampantly transfers between coinfections. Here we test the hypothesis that temperatures at the extreme edges of an insect's habitable range alter bacteriophage WO inducibility and in turn, Wolbachia densities and the penetrance of cytoplasmic incompatibility. We report four key findings using the model wasp, Nasonia vitripennis: First, both cold treatment at 18 C and heat treatment at 30 C reduce Wolbachia densities by as much as 74% relative to wasps reared at 25 C. Second, in all cases where Wolbachia densities decline due to temperature changes, phage WO densities increase and inversely associate with Wolbachia densities. Heat has a marked effect on phage WO, yielding phage densities that are 552% higher than the room temperature control. Third, there is a significant affect of insect family on phage WO and endoysmbiont densities. Fourth, at extreme temperatures, there was a temperature-mediated adjustment to the density threshold at which Wolbachia cause complete cytoplasmic incompatibility. Taken together, these results demonstrate that temperature simultaneously affects phage WO densities, endosymbiont densities, and the penetrance of cytoplasmic incompatibility. While temperature shock enhances bacteriophage inducibility and the ensuing bacterial mortality in a wide range of medically and industrially-important bacteria, this is the first investigation of the associations in an obligate intracellular bacteria. Implications to a SOS global sensing feedback mechanism in Wolbachia are discussed

    Bidirectional incompatibility among divergent Wolbachia and incompatibility level differences among closely related Wolbachia in Nasonia

    Get PDF
    Author Posting. © The Author(s), 2007. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Heredity 99 (2007): 278–287, doi:10.1038/sj.hdy.6800994.Most insect groups harbor obligate bacterial symbionts from the alphaproteobacterial genus Wolbachia. These bacteria alter insect reproduction in ways that enhance their cytoplasmic transmission. One of the most common alterations is cytoplasmic incompatibility (CI) - a post-fertilization modification of the paternal genome that renders embryos inviable or unable to complete diploid development in crosses between infected males and uninfected females or infected females harboring a different strain. The parasitic wasp species complex Nasonia (N. vitripennis, N. longicornis, and N. giraulti) harbor at least six different Wolbachia that cause cytoplasmic incompatibility. Each species have double infections with a representative from both the A and B Wolbachia subgroups. CI relationships of the A and B Wolbachia of N. longicornis with those of N. giraulti and N. vitripennis are investigated here. We demonstrate that all pairwise crosses between the divergent A strains are bidirectionally incompatible. We were unable to characterize incompatibility between the B Wolbachia, but we establish that the B strain of N. longicornis induces no or very weak CI in comparison to the closely related B strain in N. giraulti that expresses complete CI. Taken together with previous studies, we show that independent acquisition of divergent A Wolbachia has resulted in three mutually incompatible strains, while codivergence of B Wolbachia in N. longicornis and N. giraulti is associated with differences in CI level. Understanding the diversity and evolution of new incompatibility strains will contribute to a fuller understanding of Wolbachia invasion dynamics and Wolbachia-assisted speciation in certain groups of insects.This work was supported by grant EF-0328363 and DEB-9981634 from the National Science Foundation to J.H.W. and an Ernst Caspari Research Fellowship to S.R.B while he was at the University of Rochester. S.R.B. acknowledges support from the NASA Astrobiology Institute (NNA04CC04A)

    Enhanced ERbeta immunoexpression and apoptosis in the germ cells of cimetidine-treated rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cimetidine, refereed as antiandrogenic drug, causes hormonal changes in male patients such as increased testosterone and FSH levels. In the rat testis, structural alterations in the seminiferous tubules have been related to germ cell loss and Sertoli cell death by apoptosis. Regarding the important role of Sertoli cells in the conversion of testosterone into estrogen, via aromatase, the immunoexpression of estrogen receptors-beta (ERbeta) was evaluated in the germ cells of untreated and treated rats with cimetidine. A relationship between ERbeta immunoreactivity and apoptosis was also investigated in the germ cells of damaged tubules.</p> <p>Methods</p> <p>Immunohistochemistry for detection of ERbeta and TUNEL method were performed in testicular sections of adult male rats treated with 50 mg/Kg of cimetidine (CmG) or saline solution (CG) for 52 days.</p> <p>Results</p> <p>In CG, a cytoplasmic immunoexpression for ERbeta was observed in spermatogonia, primary spermatocytes and spermatids. An evident ERbeta immunoreactivity was always observed in the flagellum and residual bodies of late spermatids. In CmG, the cytoplasm or cytoplasm and nuclei of germ cells of the damaged tubules by cimetidine showed enhanced ERbeta immunostaining. TUNEL-labeling was usually observed in the same germ cell types exhibiting enhanced ERbeta immunoreactivity.</p> <p>Conclusion</p> <p>The presence of ERbeta immunolabeling in the flagellum and residual bodies of spermatids reinforces the role of estrogen in spermiogenesis. The overexpression of ERbeta in the germ cells of CmG could be related to a possible interference of cimetidine on tubular androgenization and/or on the intratubular aromatase due to Sertoli cell damage. The parallelism between ERbeta overexpression and apoptosis indicates a participation of ERbeta on germ cell death.</p

    Serological Profiling of a Candida albicans Protein Microarray Reveals Permanent Host-Pathogen Interplay and Stage-Specific Responses during Candidemia

    Get PDF
    Candida albicans in the immunocompetent host is a benign member of the human microbiota. Though, when host physiology is disrupted, this commensal-host interaction can degenerate and lead to an opportunistic infection. Relatively little is known regarding the dynamics of C. albicans colonization and pathogenesis. We developed a C. albicans cell surface protein microarray to profile the immunoglobulin G response during commensal colonization and candidemia. The antibody response from the sera of patients with candidemia and our negative control groups indicate that the immunocompetent host exists in permanent host-pathogen interplay with commensal C. albicans. This report also identifies cell surface antigens that are specific to different phases (i.e. acute, early and mid convalescence) of candidemia. We identified a set of thirteen cell surface antigens capable of distinguishing acute candidemia from healthy individuals and uninfected hospital patients with commensal colonization. Interestingly, a large proportion of these cell surface antigens are involved in either oxidative stress or drug resistance. In addition, we identified 33 antigenic proteins that are enriched in convalescent sera of the candidemia patients. Intriguingly, we found within this subset an increase in antigens associated with heme-associated iron acquisition. These findings have important implications for the mechanisms of C. albicans colonization as well as the development of systemic infection
    corecore