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ABSTRACT 
 
 Most insect groups harbor obligate bacterial symbionts from the alpha-

proteobacterial genus Wolbachia. These bacteria alter insect reproduction in ways that 

enhance their cytoplasmic transmission.  One of the most common alterations is 

cytoplasmic incompatibility (CI) - a post-fertilization modification of the paternal 

genome that renders embryos inviable or unable to complete diploid development in 

crosses between infected males and uninfected females or infected females harboring a 

different strain.  The parasitic wasp species complex Nasonia (N. vitripennis, N. 

longicornis, and N. giraulti)  harbor at least six different Wolbachia that cause 

cytoplasmic incompatibility. Each species have double infections with a representative 

from both the A and B Wolbachia subgroups.  CI relationships of the A and B Wolbachia 

of N. longicornis with those of N. giraulti and N. vitripennis are investigated here.  We 

demonstrate that all pairwise crosses between the divergent A strains are bidirectionally 

incompatible. We were unable to characterize incompatibility between the B Wolbachia, 

but we establish that the B strain of N. longicornis induces no or very weak CI in 

comparison to the closely related B strain in N. giraulti that expresses complete CI.  

Taken together with previous studies, we show that independent acquisition of divergent 

A Wolbachia has resulted in three mutually incompatible strains, while codivergence of B 

Wolbachia in N. longicornis and N. giraulti is associated with differences in CI level.  

Understanding the diversity and evolution of new incompatibility strains will contribute 

to a fuller understanding of Wolbachia invasion dynamics and Wolbachia-assisted 

speciation in certain groups of insects. 
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INTRODUCTION 

Wolbachia are widespread endosymbiotic bacteria that are found predominantly 

in the germlines of arthropods and nematodes (Werren, 1997; Stouthamer et al., 1999; 

Stevens et al., 2001).  Their main mode of transmission within species is maternal from 

ovaries to eggs, but horizontal transmission must also occur between species to account 

for the wide range of infected hosts. By manipulating arthropod reproduction through 

male killing, parthenogenesis, feminization, and cytoplasmic incompatibility (CI), 

Wolbachia increase the relative number of infected females (i.e., the transmitting sex) in 

a host population, and thereby spread rapidly within a host species (Caspari and Watson, 

1959; Turelli and Hoffmann, 1991; Turelli, 1994; Werren and O’Neill, 1997).  These 

reproductive alterations can also have important implications to basic processes such as 

sex determination (Rigaud et al., 1997; Werren and Beukeboom, 1998), sexual selection 

(Jiggins et al., 2000), and speciation (Laven, 1957; Breeuwer and Werren, 1990; 

Bordenstein et al., 2001; Bordenstein, 2003; Jaenike et al., 2006; Koukou et al., 2006). 

Between arthropod species, horizontal transmission is common on an evolutionary time 

scale (Werren et al. 1995a; Sintupachee et al., 2006) and has been observed in the 

laboratory under certain circumstances (Heath et al., 1999; Boyle et al., 1993; Rigaud et 

al., 2001; Huigens et al., 2004; Frydman et al, 2006). 

CI is the most commonly detected type of Wolbachia-induced reproductive 

alteration.  It is a sperm-egg incompatibility expressed in crosses between an infected 

male and uninfected female.  While the genetic and biochemical mechanisms of CI are 

not known, the cytological effects are clear. Sperm that are “modified” by Wolbachia in 

the testes show abnormal processing following fertilization of the egg, if the appropriate 
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Wolbachia are not present in the egg to “rescue” the modification (Werren, 1997).  In 

particular, breakdown of the nuclear envelope of the male pronucleus is delayed (Tram 

and Sullivan, 2002) and the paternal chromatin undergoes improper condensation during 

early mitotic divisions (O’Neil and Karr, 1990; Reed and Werren, 1995; Callaini et al.,  

1997; Tram et al., 2006).  As a result,  most embryos usually die, but in some 

haplodiploid species haploidization of the embryo results in male development (Reed and 

Werren, 1995; Tram et al., 2006).  When both male and female are infected by 

Wolbachia with the same "modification-rescue" system, the sperm modification is 

rescued in eggs, and compatibility is restored (Werren, 1997).  However, if a male and 

female harbor strains of Wolbachia with different "modification-rescue" systems, then 

bidirectional CI results (Werren, 1997; Perrot-Minnot et al., 1996; Charlat et al., 2001).  

Such strains are referred to as ‘(in)compatibility types’ and have been observed in various 

insects, including mosquitoes, fruit flies, and parasitic wasps (Laven, 1957; Breeuwer and 

Werren, 1990; O’Neill and Karr, 1990; Montchamp-Moreau et al., 1991; Perrot-Minnot 

et al., 1996; James and Ballard, 2000; Bordenstein et al., 2001; Dedeine et al., 2004).  

Bidirectional CI has attracted considerable attention for its potential role in driving rapid 

speciation, since gene flow between diverging populations that harbor different 

Wolbachia incompatibility types, can be reduced or eliminated due to endosymbionts 

(O’Neill and Karr 1990; Werren, 1998; Bordenstein et al., 2001; Bordenstein, 2003; 

Telschow et al., 2002).  The effect can also select for premating isolation (Telschow et 

al., 2005a,b). 

Among the eight major subgroups of Wolbachia (A-H, Lo et al., 2002; Rowley et 

al. 2004; Bordenstein and Rosengaus, 2005), the A and B groups are most commonly 



 5

found in insects and diverged approximately 60 million years ago (Werren et al., 1995a). 

Multiple infections occur at appreciable frequencies throughout a wide range of insect 

species (Werren et al., 1995a,b; Werren and Windsor, 2000; Jeyaprakash and Hoy, 2000).  

In the parasitic wasp genus Nasonia, all three species (N. vitripennis, N. giraulti, and N. 

longicornis) are coinfected by each of the two major insect-Wolbachia subdivisions, A 

and B (Breeuwer et al., 1992; Werren et al., 1995a; Werren and Bartos, 2001; van 

Opijnen et al., 2005). Nearly all field samples within these three species harbor the 

double AB infections (Bordenstein et al. 2001). This genus is therefore particularly useful 

for studying the CI phenomenon as they are prone to acquiring and maintaining 

genetically distinct Wolbachia.  Some isolates of N. longicornis are now known to carry 

two very closely related B Wolbachia strains along with the A Wolbachia strain (R. 

Choudury, pers. communication).  The IV7 isolate used in this study, however, is only 

infected with one A and one B Wolbachia.  

These three wasp species are reproductively isolated in the laboratory owing to 

Wolbachia-induced bidirectional incompatibility between the different, double AB 

infections (Breeuwer and Werren 1990; Bordenstein et al., 2001).  CI also produces 

distinct phenotypes among the Nasonia species: embryonic mortality in N. longicornis 

and N. giraulti due to mis-segregation of the paternal chromosomes, and conversion to 

male development in N. vitripennis due to exclusion of the paternal genome from 

embryonic development (Bordenstein et al., 2003; Tram et al., 2006). While there are 

low levels of conversion (10%-20%) in N. longicornis and N. giraulti and low levels of 

embryonic mortality in N. vitripennis, a genetic analysis showed the major difference 
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underlying the mortality / conversion phenotype is a Nasonia host genetic effect rather 

than Wolbachia strain differences (Bordenstein et al., 2003). 

In this paper, we determine cytoplasmic incompatibility among the single A and B 

Wolbachia in Nasonia and how the incompatibility relationships associate with genetic 

divergence among the Wolbachia strains. The phylogenetic data thus far suggest that five 

Wolbachia infections entered the Nasonia system laterally and one codiverged with its 

host species (Figure 1). These phylogenetic inferences are based on three lines of 

evidence. First, each of the three A Wolbachia show more wsp (Wolbachia surface 

protein gene) nucleotide similarity to strains found in other insects than to those strains 

infecting other Nasonia species (van Opijnen et al. 2005). For instance, the A infection in 

N. longicornis shows no synonymous divergence to that of Drosophila melanogaster 

(wMel) and D. simulans (wAu), yet it shows 14.44% and 8.86% synonymous divergence 

to the A infection in N. vitripennis and N. giraulti, respectively. Further, extrapolated 

divergence times for the A Wolbachia in these Nasonia species (9.0 and 5.5 MYA, 

respectively) are greater than the estimated time of the most recent common ancestor of 

the three Nasonia species (Campbell et al. 1993).  The group B Wolbachia show a similar 

trend except for the strains in N. giraulti and N. longicornis. These B strains show no wsp 

synonymous divergence, while they are 26.81% divergent to the B infection in N. 

vitripennis.  These strains presumably codiverged with the ancestor of the B Wolbachia 

in N. giraulti and N. longicornis, sister species that are estimated to have diverged only a 

few hundred thousand years ago (Campbell et al. 1993; van Opijnen et al. 2005). They 

remain one of only a few documented instances of codivergence of Wolbachia and their 

insect hosts. The above nucleotide patterns are also observed with additional genes, 

including 16S rDNA and seven protein-coding genes (Breeuwer et al., 1992; Werren et 
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al., 1995a; van Opijnen et al., 2005; Casiraghi et al., 2005; Baldo et al., 2006).  Together, 

the data suggest that the three A Wolbachia and two B Wolbachia of Nasonia were 

independently acquired by horizontal transfer from insects outside the genus.  The 

exception of the B group Wolbachia in N. giraulti and N. longicornis indicates 

codivergence with these sister species. Finally, a low level of nucleotide diversity among 

each infection suggests that all of the Wolbachia were acquired too recently to have had 

time to accumulate much polymorphism. This scenario is consistent with the proposed 

origins of the Nasonia Wolbachia. 

A major question regarding the evolution of CI-inducing Wolbachia is how 

codivergence of closely related strains or lateral acquisition of divergent strains into the 

same host species influence the expression and evolution of new cytoplasmic 

incompatibility strains. We address three questions related to this topic: (i) Do the 

distantly related A infections of each species constitute three distinct incompatibility 

types? (ii) Do the closely related B infections of N. giraulti and N. longicornis differ in 

CI? and (iii) Does the host species genotype influence bidirectional incompatibility 

between double infections of N. giraulti and N. longicornis? These questions have 

important implications for the origin of new incompatibility types, the rate at which new 

ones can evolve, and the significance of host-Wolbachia genetic interactions in shaping 

CI patterns.  

 

MATERIALS AND METHODS 

 Nasonia are gregarious parasitoid wasps of fly pupae. An introduction to Nasonia 

biology can be found in Whiting (1967).  They are raised on Sarcophaga bullata (flesh 

(Figure 1) 
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fly) pupae in the laboratory, with constant light and temperature (25°C).  Under these 

conditions, generation time is 14 days for N. vitripennis and 15 days for N. giraulti and N. 

longicornis.  These insects have haplodiploid sex determination, so females are diploid 

and develop from fertilized eggs, while males are haploid and develop from unfertilized 

eggs.   

Nomenclature: Individuals in each Nasonia species are double infected with an 

A and B Wolbachia strain, comprising at least six strains in the genus.  For the purposes 

of this paper, we will use a shorthand nomenclature system to refer to these strains in the 

text and figures.  An italicized lower case w followed by a capital A or B denotes the 

subgroup of Wolbachia (e.g., wA).  Zero in place of this denotes an uninfected host.  The 

lower case v, g, or l that follows specifies whether the strain is derived from N. 

vitripennis, N. giraulti, or N. longicornis.  And finally, when describing crosses with 

wasps harboring the Wolbachia of another species (i.e., introgression lines), the entire 

designation is enclosed in brackets, and a capital V, G, or L follows to indicate the host 

species genetic background.  Thus, [wAl]L symbolizes the N. longicornis A Wolbachia in 

the N. longicornis host genetic background.   

Insect strains: Eight laboratory insect strains were used to test cytoplasmic 

incompatibility when Wolbachia occur in their resident species background.  Two N. 

vitripennis strains were used: [wAv]V is a single A infected lab strain (named 12.1) and 

[0v]V is an uninfected strain (named 13.2).  Both were derived from a double infected 

wild-type strain by spontaneous loss of Wolbachia following prolonged diapause (Perrot-

Minnot et al.,  1996).  Three N. giraulti strains were used: [wAg,wBg]G is double 

infected (RV2),  [0g]G is uninfected (RV2R), and [wAg]G is single A infected (16.2 
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RV2D).  The latter two strains were both derived from RV2  through antibiotic treatments 

in 1996, and diapause treatment in 1998, respectively. Similarly for N. longicornis, 

[wAl,wBl]L is double infected (IV7), [0l]L is uninfected (IV7R3-1B), and [wAl]L is 

single A infected (2.1 IV7D).  In this species, the latter two strains were derived from IV7 

through antibiotic treatment in 2000, and diapause treatment in 1998, respectively.  

Attempts to isolate single B infections of N. giraulti and N. longicornis through antibiotic 

and diapause treatment were unsuccessful, probably due to low bacterial densities of 

these infections in diapausing host larvae. 

Introgression lines:  Introgression lines were produced that harbor the cytoplasm 

of N. longicornis (infected and uninfected) in the genetic background of N. giraulti.  

[wAl,wBl]G carries the double infected N. longicornis cytoplasm from IV7 in the N. 

giraulti genetic background of RV2R.  [0l]G is comprised of the uninfected cytoplasm of 

IV7R3-1B and the same N. giraulti genetic background of RV2R.   These introgression 

lines were generated by six generations of backcrossing hybrid females to males of N. 

giraulti.  This design should theoretically result in at least a 98% genome replacement, 

and the retaining of the cytoplasm of the parental female (infected or uninfected).  

Crosses with these introgression lines and pure N. giraulti lines that carry a N. giraulti 

cytoplasm were set up according to the methods described below.   

Crossing design: All crosses were set up as single pair matings between virgin 

females and virgin males. Males and females were collected as pupae.  Individual female 

and male adults were paired and observed for 10-15 minutes. Only those pairings where 

copulation occurred were used. After 24 hours, the males were discarded and each female 

was provided with four hosts and a drop of honey for feeding. After 48 hours, the females 

were transferred to new vials and given a single host for 6 hours.  Females were then 
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discarded from each vial and the parasitized hosts were left undisturbed until adult 

emergence in approximately two weeks.  Adults were scored upon death for sex and total 

family size.  Crosses producing diapause offspring were not included in the scoring. 

Statistics: We present descriptive statistics and significance values from 

nonparametric Mann-Whitney U (MWU)Tests using MINITAB 12.23.  Summary data 

are indicated as percentages or as means ± standard errors of offspring number.   

 

Results 

Results can be summarized as follows: (i) All three divergent A Wolbachia strains 

in the three Nasonia species constitute different incompatibility types. (ii) The 

codiverging strains of B Wolbachia in N. giraulti and N. longicornis differ in CI 

penetrance with the latter inducing weak or no CI. (iii) The host genetic background does 

not influence bidirectional CI of double AB infections between the sister species N. 

giraulti and N. longicornis.  Previous work had also showed no host genetic effects on 

bidirectional CI between N. giraulti and N. vitripennis (Breeuwer and Werren, 1993a).  In 

interpreting the results below, it should be kept in mind that in compatible crosses 

fertilized eggs normally result in only female offspring whereas males result from 

unfertilized eggs.  Therefore, CI is documented by a reduction in the number of female 

progeny, and can be due to mortality of female embryos  (which does not increase the 

number of male progeny) or conversion of diploid embryos to haploid males (which does 

increase the number of male progeny).  The relative level of mortality and conversion CI 

can therefore be determined by comparing numbers of sons and daughters in 

incompatible crosses to compatible control crosses. 
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Bidirectional CI between distantly-related A Wolbachia strains: The A 

Wolbachia of all three species of Nasonia are not closely related, indicating independent 

acquisition of all three bacteria by horizontal transfer from other sources (Figure 1; 

Breeuwer et al., 1992; Werren et al., 1995a; van Opijnen et al., 2005).  The modification 

and rescue components of these three A strains were tested for whether they were 

sufficiently different to render them bidirectionally incompatible.  Experiments were 

done with each strain within its respective host species genetic background. 

Figure 2 summarizes the results of these compatibility tests using relative percent 

offspring produced to standardize differences in fertility between the species. Crosses 

between all three A Wolbachia infected wasps show significant decreases in diploid 

female production in comparison to control uninfected crosses and self-crosses that have 

the same maternal parent.  For example, bidirectional CI between the A infections of N. 

longicornis and N. vitripennis yields a 76.9% reduction in the number of daughters in the 

wAl male x wAv female cross direction (mean ± s.e.: 8.7 ± 3.8 daughters, N=9 vs. 37.6 ±  

2.3 daughters produced in the wAv x wAv control self cross, N=27, MWU, p = 0.0001) 

and a 100% reduction in the reciprocal wAv male x wAl female cross direction (0.0 ± 0.0 

daughters, N=4 vs. 10.7 ± 1.92 control daughters, N=10, p = 0.0053).  In a replicate 

experiment, we determined that the partial CI in the wAl male x wAv female cross is 

repeatable and results from an incomplete wAl modification of the sperm rather than 

partial rescue.  The wAl male x 0v female cross shows similar levels of partial CI (4.7 ± 

1.1 daughters, N=17) when compared to the 0v x 0v control self cross (28.5 ±  1.6 

daughters, N=27, p < 0.0001, data not shown).  Approximately 21% of the F1 

incompatibility in the wAl male x wAv female cross may be due to interspecific F1 

(Figure 2) 
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hybrid mortality as 0l males x 0v females gives significantly fewer daughters (24.5 ± 1.7, 

N=30) than that of the control 0v male x 0v female cross (31.0 ± 0.9, N=31) (MWU, p = 

0.001). 

Bidirectional CI between the A infections of the sister species N. longicornis and 

N. giraulti causes a 36.9% reduction in female offspring number in the wAl male x wAg 

female cross  (15.9 ± 1.0 daughters, N=18 vs. 25.2 ± 1.1 control daughters, N=27, MWU, 

p < 0.0001) and a 95.3% reduction in the reciprocal wAg male x wAl female cross (0.5 ± 

1.0 daughters, N=6 vs. 10.7 ± 1.92 control daughters, N=10, MWU, p = 0.04).  In a 

replicate experiment, we found that this asymmetry in incompatibility strength is 

repeatable and again due to partial sperm modifications of the respective male infections. 

The incomplete modification of the sperm is apparent when comparing the number of 

daughters of the wAl male x 0g female cross to that of the uninfected 0g male x 0g 

female control (8.3 ± 1.6, N=23 vs. 17.0 ± 1.7, N=28), which shows a 51.2% reduction in 

female offspring. Since females are uninfected in these  cases, there is no rescue to be 

expected.  Similarly, wAg male x 0l female causes a 94.3% reduction in female offspring 

(0.5 ± 0.2, N=31) relative to that of the uninfected 0l male x 0l female cross (8.7 ± 1.3, 

N=30).  

And finally, bidirectional CI between the A infections of N. vitripennis and N. 

giraulti causes a 92.5% reduction in  wAv male x wAg female relative to the control 0v 

male x wAg female  (1.9 ± 0.7, N=9  vs. 25.2 ± 1.1 control, N=27, MWU, p < 0.0001) 

and a 87.0% reduction in the reciprocal wAg male x wAv female cross versus the control 

(4.9 ± 3.0, N=7  vs. 37.6 ± 2.3 control, N=27, MWU, p = 0.0001).  Bidirectional 
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incompatibility of these Nasonia A infections has been previously documented 

(Bordenstein and Werren, 1998). 

In summary, all three divergent A strains from each of the Nasonia species are 

bidirectionally incompatible when in their own respective host genetic background. 

Partial incompatibility in these crosses results from incomplete A Wolbachia sperm 

modifications, rather than partial rescuing of that modification in the A-infected fertilized 

eggs.  

CI levels of recently diverged B Wolbachia strains: In contrast to the 

horizontally acquired A infections, the closely related B Wolbachia in N. giraulti and N. 

longicornis appear to have codiverged during divergence of their respective host species 

(Figure 1) (van Opijnen et al 2005).  The occurrence of such closely related Wolbachia 

within hosts that can be hybridized presents a rare opportunity to characterize the changes 

in CI that occur among recently diverged Wolbachia variants.  Because single B infected 

strains of these two species have proven difficult to generate, we were restricted to 

characterizing unidirectional CI only via crosses between double infected males (e.g., 

wAg,wBg) and single A infected females (e.g., wAg).  The reason is that while the sperm 

modification of type A Wolbachia will be rescued in the A infected egg, the sperm 

modification of type B Wolbachia will not be rescued because the B infection is absent  

from the egg (Mercot et al., 1995; Sinkins et al., 1995; Perrot-Minnot et al., 1996; 

Dobson et al., 2001).   

Figure 3 summarizes the results of these compatibility tests.  wBg induces nearly 

complete CI, but wBl induces weak or no CI within its resident species genetic 

background.  This finding can be seen by comparing the number of females produced in 

(Figure 3) 
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the following crosses.  When wAg,wBg males are crossed to wAg females (N=34), the 

number of females produced are significantly reduced from that of the control wAg male 

x wAg female self-cross (N=19) (MWU, p < 0.0001).  These results indicate that the wBg 

bacterium in the male has modified the sperm and the wAg-infected egg is incapable of 

rescuing that modification.  The conclusion is further supported by comparing the 

wAg,wBg male x 0g female cross (N=15) to the wAg male x 0g female cross (N=24).  

Here CI is observed in both cases, but when wAg,wBg males are used, the CI is complete 

(i.e., no female production), and when wAg males are used, the CI is incomplete (i.e., 

some females produced).  Thus, double infected males express stronger levels of CI than 

single A-infected males in N. giraulti. However, B-infected males do induce complete CI. 

The pattern is different in N. longicornis. Genetic crosses show that wBl expresses 

no or very weak CI in its own host genetic background.  The wAl,wBl male x wAl female 

cross produces many daughters (9.3 ± 1.0, N=28) in comparison to those of the control 

wAl male x wAl female self-cross (13.9 ± 1.7, N=7) (MWU, p = 0.1418).  The lack of 

significant CI in the former cross can be explained either by the  inability of wBl in a 

double infected male to induce incompatibility or by wAl female rescue of the wBl sperm 

modification. A comparison of the wAl,wBl male x 0l female (N=21) cross to the wAl 

male x 0l female cross (N=15) shows that wBl does not express significant CI levels 

(77.1% and 84.0% reduction in the number of females, MWU, p = 0.9014). Taken 

together, these results specify that wBl expresses no or weak CI.  It is possible that some 

expression of CI  could be detected with larger sample sizes in the crosses. Absence of 

the B Wolbachia in N. longicornis cannot account for this difference in CI level as 

infection status was confirmed by PCR amplification of Wolbachia 16S rDNA gene 
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sequences before and after the experiments. wBl may cause a fecundity cost in N. 

longicornis as wAl,wBl self crosses (N=17) produce significantly fewer daughters and 

total offspring than the wAl self crosses (N=7) (MWU, p = 0.03 for both). 

Taken together, results indicate that the closely related B Wolbachia of N. giraulti 

and N. longicornis express different levels of CI in their resident species genetic 

backgrounds.  However, we were not able to determine whether they show bidirectional 

CI to each other, due to failures in producing single wBl and wBg strains. In addition, CI-

induced embryonic mortality is the expected, primary CI type in N. giraulti and N. 

longicornis (Bordenstein et al. 2003), as indicated by the significant reductions in total 

family sizes of incompatible crosses. We estimate that the average percentage of eggs 

that die due to embryonic mortality from the crosses showing significant CI is 86.3%  in 

N. giraulti and 73.7% in N. longicornis (see Methods), respectively.  

Absence of host genetic influences on N. giraulti – N. longicornis bidirectional 

CI:  Bordenstein et al., (2001) previously reported bidirectional CI between the double 

infections of these two sister species in their normal genetic background.  Double 

infected individuals were used from each species and incompatibility levels were 

complete in one cross direction, and incomplete in the other, reflecting the typically 

incomplete CI of infected N. longicornis males.  To examine whether the host genome 

exerts any influence over bidirectional CI and the variation in levels of CI, the wAl,wBl 

infected N. longicornis cytoplasm was introgressed by backcrossing it for six generations 

into a N. giraulti genetic background.  This line, denoted [wAl,wBl]G as well as its 

uninfected counterpart [0l]G, was used to retest CI against the pure N. giraulti lines, 

[wAg,wBg]G and [0g]G.  The experimental design slightly differed from the above 
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experiments in that single females were allowed to oviposit into two hosts for life.  

Therefore, family sizes are larger than those reported above. 

As seen in Figure 4, bidirectional CI between these double infections is still 

expressed even when the N. longicornis Wolbachia are in a N. giraulti genome.  Self-

crosses and crosses with uninfected individuals are fully compatible and yield normal 

female biased sex ratios.  In incompatible crosses, the number of females is reduced by 

88.4% in the [wAl,wBl]G male x [wAg,wBg]G female cross (N=23) (MWU, p < 0.0001) 

and 99.4% in the reciprocal [wAg,wBg]G male x [wAl,wBl]G female cross (N=25) 

(MWU, p < 0.001).  CI levels are strong and are similar to levels from crosses showing 

bidirectional CI in non-introgression lines (Bordenstein et al., 2001).  Therefore, the N. 

giraulti host genome does not affect bidirectional CI nor the incomplete levels of CI 

associated with N. longicornis Wolbachia in this introgression line. Previous work had 

found no host genetic effects on bidirectional CI of double AB infections in the species 

pair N. giraulti and N. vitripennis (Breeuwer and Werren, 1993a). 

 

DISCUSSION 

The study set out to answer three questions related to cytoplasmic incompatibility 

in Nasonia: (i) Do the distantly related A Wolbachia of each species constitute distinct 

incompatibility types? (ii) Do the closely related B Wolbachia of N. giraulti and N. 

longicornis differ in CI? and (iii) Does the host genome influence interspecific, 

bidirectional incompatibility between double infections of N. giraulti and N. longicornis?  

Experiments demonstrated that all three species-specific A infections in the 

Nasonia genus are bidirectionally incompatible and constitute at least three different 

incompatibility types. Phylogenetic relationships of these strains, based on several 

(Figure 4) 
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Wolbachia gene sequences (Werren et al., 1995a; Werren and Bartos, 2001; van Opijnen 

et al., 2005; Casiraghi et al., 2005; Baldo et al., 2006), indicate that they are genetically 

divergent and were acquired in separate horizontal transfer events into the Nasonia from 

other unknown insects (Figure 1). Our finding of bidirectional incompatibility is 

consistent with this hypothesis, since there has been ample time for the modification-

rescue systems of these strains to have diverged and become incompatible.  Independent 

acquisition via lateral transfer events tends to be the predominant mechanism for how 

different incompatibility types arise in a host system (Bordenstein, 2003).  While little is 

known about the average rate of horizontal transfer for Wolbachia, it is apparent that 

horizontal transfer events into Nasonia can sometimes occur frequently – indeed, two 

separate acquisitions (two A Wolbachia) in N. giraulti and N. longicornis have happened 

in the last 0.2 My based on their estimated divergence time (Campbell et al., 1993) 

(Figure 1).  

An alternative mechanism for the origin of different incompatibility types is in 

situ evolution.  That is, new incompatibility types could evolve within a species or in 

closely related species that have a Wolbachia that has co-diverged with the host.   

Ultimately, new incompatibility types must arise from ancestral incompatibility types to 

account for the variation in CI observed among Wolbachia that have entered species by 

horizontal transfer.  However, the process of new incompatibility type evolution is not 

well understood, due to a lack of knowledge about the genetic basis of CI. Charlat et al. 

(2001) developed a two-step model for the in situ evolution of new incompatibility types.  

They assume that the modification and rescue components of CI are governed by separate 

genes.  The first step of the model involves the neutral spread of a mutation creating a 
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new modification type.  When this mutation drifts to an appreciable frequency, a second 

mutation that can rescue this new modification type will be selected for and cause the 

deterministic spread of this new incompatibility type under a broad set of conditions.  

Models of incompatibility type evolution are difficult to test because there are 

very few natural examples thus far of incipient evolution of new incompatibility types 

within a species or between sister species.  This is in part based on a limited spectrum of 

fastly evolving genetic markers to infer strain relationships, though transposon and phage 

genes may prove useful in the future (Sanogo and Dobson, 2004; Duron et al., 2005; 

Duron et al., 2006).  Most studies showing bidirectional CI within their natural host 

species are based upon Wolbachia strains that are distantly related (O’Neill and Karr, 

1990; Clancy and Hoffmann, 1996; Perrot-Minnot et al., 1996; Bordenstein et al., 1998, 

James and Ballard, 2000, Dedeine et al., 2004, Mouton et al., 2005) with only few 

exceptions (Laven, 1957; Sinkins et al., 2005). The reason then for the paucity of data 

regarding this phenomena is likely a simple one.  There are currently few described cases 

of sister CI-Wolbachia strains existing in the same or sister host species.  Microinjection 

experiments may circumvent this problem because closely related Wolbachia that are 

harbored in distantly related species can be moved into a common host background 

(Charlat et al., 2004) and then tested for bidirectional CI.  However, results produced 

from this approach must be interpreted with caution as host-Wolbachia interactions in the 

novel host may lead to confounding effects on incompatibility relationships.  

Nevertheless, some experiments that moved relatively closely related/identical Wolbachia 

of Drosophila simulans and D. sechellia into a common D. simulans genetic background 

did not find significant differences in CI phenotype (Charlat et al., 2002).  
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The B Wolbachia strains of N. giraulti and N. longicornis constitute one of the 

best cases for natural codivergence of host and Wolbachia in insects.  Sequence 

relationships of multiple Wolbachia genes from these B strains parallel the phylogenetic 

relationship of the two host species, N. giraulti and N. longicornis, which shared a direct 

common ancestor ~ 0.2 Mya (Campbell et al., 1993; Werren et al., 1995a; Werren and 

Bartos, 2001; van Opijnen et al., 2005; Choudhury et al., unpublished).  However, a 

practical problem remains to determine whether they show bidirectional CI.  Each strain 

must be isolated as a single infection from the typically double infected individuals of 

each species.  Crosses between them can then be performed to test for bidirectional CI, as 

done with the single A infections in this study.  Attempts to segregate out these single B 

infections, however, have only been successful in N. vitripennis (Perrot-Minnot et al., 

1996). Both a prolonged diapause treatment (method described in Perrot-Minnot et al., 

1996) and a low-dose antibiotic treatment have failed to segregate out the single B 

infections of N. giraulti and N. longicornis (Bordenstein and Werren, unpublished).  Only 

the A infections and cured individuals have been isolated in these sister species.  A likely 

explanation for this outcome is a higher density of A than B Wolbachia in these species.    

We therefore cannot yet determine whether bidirectional CI occurs between these 

two related B infections.  CI between the distantly related B strains of N. vitripennis and 

N. giraulti has been shown (Bordenstein and Werren, 1998), suggesting that at least these 

B strains represent two distinct incompatibility types. In addition, despite the inability to 

segregate out the sister B Wolbachia strains, we can still test for differences in the 

expression of unidirectional CI for each of the B infections by mating a double AB 

infected male to a single A infected female.  By doing so, we ‘expose’ the CI associated 
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with the B infection, since the A sperm modification of the double infected individual 

will be rescued in the egg, but the B infection will not.   

The experiments reported here showed a dramatic difference in CI level between 

these two closely related B infections, wBl and wBg (Figure 3).  The N. giraulti B strain 

expressed complete CI (i.e., no daughters are produced), while the N. longicornis B strain 

expressed nearly no CI. An important question then is why is there such a drastic 

difference in CI level between wBl and wBg? There are at least two possible explanations 

(a) the wBl Wolbachia lost the capability of inducing modification or (b) host genetic 

effects suppress modification in wBl.  We have not yet resolved these alternatives.  

CI level variation may be due to genetic changes in the wBl and wBg sister strains 

of Wolbachia, and represent early steps of evolutionary divergence in CI.  Several models 

have pointed out that once a Wolbachia strain becomes fixed in a species, there is no 

direct selection to maintain modification function in males because Wolbachia in males 

are not transmitted to future generations (Prout, 1994; Turelli, 1994; Hurst and McVean, 

1996).  Degradation in modification function is therefore expected, either by mutation 

accumulation or by selection against modification because of negative pleiotropic effects 

in infected females.  Under this scenario, the ancestral B Wolbachia of N. giraulti and N. 

longicornis is hypothesized to be a strong CI inducer that lost its ability to induce 

complete CI in N. longicornis following divergence.  This conclusion is supported by the 

fact that that the B infections in N. giraulti and N. longicornis are at near fixation 

(Bordenstein et al.,  2001). 

The B Wolbachia of N. longicornis may simply occur at lower densities and 

therefore cause lower CI levels.  Studies in several systems, including Nasonia, show 

bacterial density effects on CI level (Breeuwer and Werren, 1993b; Boyle et al., 1993; 
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Clancy and Hoffmann, 1998; Noda et al.,  2001). Recently, the bacterial density effects in 

Nasonia vitripennis were further shown to be inversely associated with bacteriophage 

WO-B densities, suggesting that rates of lytic phage development may sometimes 

underlie the regulation of Wolbachia densities in arthropods (Bordenstein et al., 2006).  If 

bacterial density is involved, it could be that the natural infection level of wBl has fallen 

below the threshold for induction of CI, or that this has occurred in the particular 

laboratory strain used, possibly subsequent to its introduction into the laboratory.   

Host genetic influences may also lead to differences in bacterial densities.  Host-

Wolbachia genetic interactions are well known to moderate CI levels in diverse host 

systems (Boyle et al., 1993; Bordenstein and Werren, 1998; McGraw et al.,  2001) and 

may do so through several routes, including effects on processing of the sperm 

modification, bacterial densities, and tissue tropism (Poinsot et al., 1998; Dobson et al.,  

1999; McGraw et al., 2001; Clark et al., 2002). Indeed, natural selection is expected to 

act upon the host genome of males to inhibit the modification action of Wolbachia, 

because their resulting sperm would then be compatible with uninfected eggs (Koehncke 

et al., unpublished).  Thus, male host effects on CI are expected to evolve at the host level 

as well.  For example, evidence indicates that Wolbachia are largely excluded from the 

developing sperm cysts in Drosophila melanogaster (McGraw et al., 2001; Clark et al.,  

2002), probably explaining the low level of modification in this species.  If such host-

induced tissue tropism is responsible for the apparent absence of CI induction by wBl, 

then we must assume that it is specific to that strain, since the wAl does induce CI.  

However, detailed cytological studies to determine the tissue specificity of  different 

Wolbachia strains in Nasonia have yet to be done. 
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The key results of this study are that all three A infections of Nasonia are distinct 

incompatibility types and that the two closely related B Wolbachia differ in CI level 

when tested in their resident species backgrounds.  If we assume that these two B 

Wolbachia are not bidirectionally incompatible, then we can say that at least a total of 

five different incompatible Wolbachia strains (3 A’s and 2 B’s) infect Nasonia, which 

were all presumably acquired by horizontal transfer from foreign sources.  The one case 

of B Wolbachia codivergence has raised several interesting questions that warrant future 

studies of the incipient evolution of changes in CI, most important is whether 

codivergence of Wolbachia more often leads to loss of function mutations rather than 

evolutionary diversification of new incompatibility types. Finally, it is apparent from 

these studies that the interspecific postmating isolation caused by double infections of CI-

Wolbachia in each Nasonia species (Breeuwer and Werren, 1990; Bordenstein et al., 

2001) is reinforced by each single infection comprising its own incompatibility type, with 

the exception of wBl. Therefore, if stochastic segregation occurs in natural populations 

leading to the loss of Wolbachia infections, both A and B strains would have to be lost to 

fully restore interspecific postmating compatibility in Nasonia hybridizations. 
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Titles and figures to legends 

Figure 1.  A schematic phylogeny showing the hypothesized origin of A (white circles) 

and B (grey circles) Wolbachia in Nasonia (redrawn from van Opijnen et al. 2005). All 

three A and two B Wolbachia strains were independently acquired in the three Nasonia 

species by horizontal transfer from another insect. The wBg,l infection then likely 

codiverged with N. giraulti and N. longicornis, denoted by the dotted lines with arrow 

heads.  Regional species distributions are noted in parentheses. Scanning electron 

micrographs of Nasonia males (Copyright Dennis Kunkel Microscopy, Inc) show the 

major morphological difference (i.e., male wing size) between the three closely related 

species, with N. giraulti, N. longicornis, and N. vitripennis having the largest, 

intermediate, and smallest wing sizes, respectively. An italicized lower case w followed 

by a capital A or B denotes the subgroup of Wolbachia (e.g., wA).  The lower case v, g, 

or l that follows specifies whether the strain is derived from N. vitripennis, N. giraulti, or 

N. longicornis.  For example, wAl symbolizes the N. longicornis A Wolbachia. 

 

Figure 2.  Bidirectional cytoplasmic incompatibility between each of the distantly related 

A Wolbachia strains of Nasonia.  Data are represented as percent males and females 

based upon the mean number of male and female offspring produced.   Data from 

compatible self-crosses are standardized so that total offspring produced equates to 100% 

to control for fertility differences between the three species; incompatible crosses are 

standardized according to the same scale for compatible crosses with the same maternal 

parent.  Crosses are always listed as male x female. 
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Figure 3.  Unidirectional cytoplasmic incompatibility caused by the single and double 

infections of N. giraulti and N. longicornis.  Data are shown as mean numbers of males 

and females produced ± standard error of total offspring for each cross.  Cross labels 

denote male infection status on top line followed by crossing symbol and female infection 

status on the bottom line. Solid arrow heads denote the two crosses showing a significant 

CI level difference between the codiverging B Wolbachia of these sister wasp species. 

 

Figure 4.  Bidirectional incompatibility between the double infections of N. longicornis 

and N. giraulti in a common N. giraulti genetic background.  Data are shown as mean 

numbers of males and females produced ± standard error of total offspring for each cross. 

Cross labels denote male infection status on top line followed by crossing symbol and 

female infection status on the bottom line. Reciprocal and self cross of infected 

individuals are shown above those of uninfected individuals. 
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Figure  2
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Figure 3
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Figure 4
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