128 research outputs found

    Persistence time of SIS infections in heterogeneous populations and networks

    Get PDF
    For a susceptible-infectious-susceptible (SIS) infection model in a heterogeneous population, we present simple formulae giving the leading-order asymptotic (large population) behaviour of the mean persistence time, from an endemic state to extinction of infection. Our model may be interpreted as describing an infection spreading through either (i) a population with heterogeneity in individuals' susceptibility and/or infectiousness; or (ii) a heterogeneous directed network. Using our asymptotic formulae, we show that such heterogeneity can only reduce (to leading order) the mean persistence time compared to a corresponding homogeneous population, and that the greater the degree of heterogeneity, the more quickly infection will die out

    Approximating time to extinction for endemic infection models

    Full text link
    Approximating the time to extinction of infection is an important problem in infection modelling. A variety of different approaches have been proposed in the literature. We study the performance of a number of such methods, and characterize their performance in terms of simplicity, accuracy, and generality. To this end, we consider first the classic stochastic susceptible-infected-susceptible (SIS) model, and then a multi-dimensional generalization of this which allows for Erlang distributed infectious periods. We find that (i) for a below-threshold infection initiated by a small number of infected individuals, approximation via a linear branching process works well; (ii) for an above-threshold infection initiated at endemic equilibrium, methods from Hamiltonian statistical mechanics yield correct asymptotic behaviour as population size becomes large; (iii) the widely-used Ornstein-Uhlenbeck diffusion approximation gives a very poor approximation, but may retain some value for qualitative comparisons in certain cases; (iv) a more detailed diffusion approximation can give good numerical approximation in certain circumstances, but does not provide correct large population asymptotic behaviour, and cannot be relied upon without some form of external validation (eg simulation studies)

    Generality of endemic prevalence formulae

    Get PDF

    Precise estimates of persistence time for SIS infections in heterogeneous populations

    Get PDF

    La pesca industrial responsable en Chimbote y su impacto en el producto bruto interno del sector pesquero, en el periodo 2016 – 2017

    Get PDF
    El problema que aborda la presente investigación fue la falta de conocimiento sobre el impacto económico de la Pesca Industrial Responsable en Chimbote en el Producto Bruto Interno Peruano en el periodo 2016-2017. El objetivo general consistió en determinar el impacto económico que tuvo la Pesca industrial responsable en Chimbote en el Producto Bruto Interno Peruano en el periodo 2016-2017. La hipótesis planteada fue que la pesca industrial responsable en Chimbote tuvo impacto económico positivo en el Producto Bruto Interno peruano, periodo 2016-2017. El tipo de estudio fue no experimental, de diseño descriptivo correlacional. Se aplicó encuesta a una muestra de tamaño de 30 personas. Existió un impacto negativo bajo de la Pesca Industrial Responsable en el Producto Bruto Interno peruano en el periodo 2016-2017. (Índice de correlación de Spearman rs = -0.212458). Existió un impacto negativo bajo de la Pesca Industrial Responsable en el Producto Bruto Interno Real peruano en el periodo 2016-2017. (rs = - 0.133259). Existió un impacto negativo bajo de la Pesca Industrial Responsable en el Producto Bruto Interno Nominal peruano en el periodo 2016-2017. (rs = -0.360400). Existió un impacto negativo muy bajo de la Pesca Industrial Responsable en el Producto Bruto Interno Per cápita peruano en el periodo 2016-2017. (rs = -0.0832036)

    Among-site variability in the stochastic dynamics of East African coral reefs

    Get PDF
    Coral reefs are dynamic systems whose composition is highly influenced by unpredictable biotic and abiotic factors. Understanding the spatial scale at which long-term predictions of reef composition can be made will be crucial for guiding conservation efforts. Using a 22-year time series of benthic composition data from 20 reefs on the Kenyan and Tanzanian coast, we studied the long-term behaviour of Bayesian vector autoregressive state-space models for reef dynamics, incorporating among-site variability. We estimate that if there were no among-site variability, the total long-term variability would be approximately one third of its current value. Thus among-site variability contributes more to long-term variability in reef composition than does temporal variability. Individual sites are more predictable than previously thought, and predictions based on current snapshots are informative about long-term properties. Our approach allowed us to identify a subset of possible climate refugia sites with high conservation value, where the long-term probability of coral cover <= 0.1 was very low. Analytical results show that this probability is most strongly influenced by among-site variability and by interactions among benthic components within sites. These findings suggest that conservation initiatives might be successful at the site scale as well as the regional scale.Comment: 97 pages, 49 figure

    Effects of human land use and temperature on community dynamics in European forests

    Get PDF
    Climate change and human land use are thought to play a dominant role in the dynamics of European central-latitude forests in the Holocene. A wide range of mathematical and statistical models have been used to study the effects of these variables on forest dynamics, including physiologically-based simulations and phenomenological community models. However, for statistical analysis of pollen count data, compositional data analysis is particularly well suited, because pollen counts give only relative information. We studied the effects of changes in human land use and temperature on European central-latitude forest dynamics at 7 sites over most of the last , using a stochastic model for compositional dynamics of pollen count data. Our approach has a natural ecological interpretation in terms of relative proportional population growth rates, and does not require information on pollen production, dispersal, or deposition. We showed that the relative proportional population growth rates of Fagus and Picea were positively affected by intensified human land use, and that those of Tilia and Ulmus were negatively affected. Also, the relative proportional population growth rate of Fagus was negatively affected by increases in temperature above about . Overall, the effects of temperature on the rate of change of forest composition were more important than those of human land use. Although there were aspects of dynamics, such as short-term oscillations, that our model did not capture, our approach is broadly applicable and founded on ecological principles, and gave results consistent with current thinking

    Semi-stochastic models for Salmonella infection within finishing pig units in the UK

    Get PDF
    A multi-group semi-stochastic model is formulated to describe Salmonella dynamics on a pig herd within the UK and assess whether farm structure has any effect on the dynamics. The models include both direct transmission and indirect (via free-living infectious units in the environment and airborne infection). The basic reproduction number [Formula: see text] is also investigated. The models estimate approximately 24.6% and 25.4% of pigs at slaughter weight will be infected with Salmonella within a slatted-floored and solid-floored unit respectively, which corresponds to values found in previous abattoir and farm studies, suggesting that the model has reasonable validity. Analysis of the models identified the shedding rate to be of particular importance in the control of Salmonella spread, a finding also evident in an increase in the [Formula: see text] value

    Sex-specific effects of mitochondrial haplotype on metabolic rate in Drosophila melanogaster support predictions of the Mother's Curse hypothesis

    Get PDF
    Evolutionary theory proposes that maternal inheritance of mitochondria will facilitate the accumulation of mitochondrial DNA (mtDNA) mutations that are harmful to males but benign or beneficial to females. Furthermore, mtDNA haplotypes sampled from across a given species distribution are expected to differ in the number and identity of these ‘male-harming’ mutations they accumulate. Consequently, it is predicted that the genetic variation which delineates distinct mtDNA haplotypes of a given species should confer larger phenotypic effects on males than females (reflecting mtDNA mutations that are male-harming, but female-benign), or sexually antagonistic effects (reflecting mutations that are male-harming, but female-benefitting). These predictions have received support from recent work examining mitochondrial haplotypic effects on adult life-history traits in Drosophila melanogaster. Here, we explore whether similar signatures of male-bias or sexual antagonism extend to a key physiological trait—metabolic rate. We measured the effects of mitochondrial haplotypes on the amount of carbon dioxide produced by individual flies, controlling for mass and activity, across 13 strains of D. melanogaster that differed only in their mtDNA haplotype. The effects of mtDNA haplotype on metabolic rate were larger in males than females. Furthermore, we observed a negative intersexual correlation across the haplotypes for metabolic rate. Finally, we uncovered a male-specific negative correlation, across haplotypes, between metabolic rate and longevity. These results are consistent with the hypothesis that maternal mitochondrial inheritance has led to the accumulation of a sex-specific genetic load within the mitochondrial genome, which affects metabolic rate and that may have consequences for the evolution of sex differences in life history
    corecore