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Abstract

In simple infection models, the susceptible proportion s∗ in endemic
equilibrium is related to the basic reproduction number R0 by s∗ = 1/R0.
We investigate the extent to which this relationship remains valid under
more realistic modelling assumptions. In particular, we relax the biolog-
ically implausible assumptions that individuals’ lifetimes and infectious
periods follow exponential distributions; allow a general recruitment pro-
cess; allow for multiple stages of infection; and consider extension to a
multigroup model in which the groups may represent, for instance, spa-
tial heterogeneity, or the existence of super-spreaders. For a homogeneous
population, we find that: (i) the susceptible proportion is s∗ = 1/Re

0,
where Re

0 is a modified reproduction number, equal to R0 only in cer-
tain circumstances; (ii) the proportions of the population in each stage of
infection are proportional to the expected time spent by an infected indi-
vidual in that stage before recovery or death. We demonstrate robustness
of the formula s∗ = 1/R0 for many human infections by noting conditions
under which Re

0 is approximately equal to R0, while pointing out other
circumstances under which this approximation fails. For heterogeneous
populations, the formula s∗ = 1/R0 does not hold in general, but we are
able to exhibit symmetry conditions under which it is valid.

Keywords: endemic equilibrium; basic reproduction number;
spatial heterogeneity; super-spreaders

1 Introduction

A key question in infectious disease modelling is the extent to which results de-
rived from highly simplified models remain valid under more realistic modelling
assumptions. With this in mind, [23, 24] recently investigated the well-known
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epidemic final size equation of Kermack and McKendrick [17], with a view to
understanding the extent to which the original equation remains valid under a
range of modelling assumptions. In fact, the original derivation of [17] is already
rather general, in that the expected infectivity of an individual is allowed to be
an arbitrary function of time since infection, and in particular an individual’s
infectious period may be drawn from a general distribution. An illuminating
discussion of the work of [17] appears in [5]. Sections 9–10 of [23] extend the
model to allow for population heterogeneity; the final size equation obtained is
a special case of equation (7) of [27]. Ma and Earn [23] discuss conditions under
which the form of the original Kermack-McKendrick [17] equation is retained,
and note that in the presence of heterogeneities, appropriate modification of the
equation is generally required. Further recent discussion of the form of the final
size equation, with particular reference to network models, appears in [24].

In the current work, we focus rather upon the prevalence level of an infection
in long-term endemic equilibrium. We shall be concerned throughout with deter-
ministic models, which is to say that we study mean behaviour in a large, well-
mixed population. Nevertheless, we find it useful to present individual-based
stochastic formulations of our models, since this aids intuitive understanding
and leads to more transparent derivation of results.

The simplest model for endemic infection is the susceptible-infective-susceptible
(SIS) model of [32], the deterministic version of which is represented by the sys-
tem of differential equations

ds

dt
= −βsi+ γi,

di

dt
= βsi− γi,

where s(t), i(t) represent the proportions of individuals who are susceptible or
infective, respectively, at time t, with s(t)+ i(t) = 1 for all t ≥ 0. The constants
β > 0, γ > 0 are known as the infection rate parameter and recovery rate
parameter, respectively. The basic reproduction number (the expected number
of secondary cases caused by a typical primary case in an otherwise susceptible
population) is here given by R0 = β/γ. For R0 ≤ 1 the only feasible equilibrium
point is the disease-free equilibrium (s, i) = (1, 0), whilst for R0 > 1 there is
also an endemic equilibrium point (s∗, i∗) = (1/R0, 1− (1/R0)).

Clearly the above SIS model is greatly over-simplified. In particular, for any
model purporting to describe long-term behaviour, it seems hard to justify the
neglect of demographic processes of birth, migration and death. A more plau-
sible model is the susceptible-infective-removed (SIR) model with demography
([26] and references therein). Individuals are recruited (by birth or immigration)
into the susceptible category at constant rate µ > 0 and die at per-capita rate
µ, and following infection are assumed to become permanently immune. The
deterministic version of the model is

ds

dt
= µ− βsi− µs, (1)
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di

dt
= βsi− γi− µi, (2)

dr

dt
= γi− µr, (3)

where s(t), i(t), r(t) represent scaled numbers of susceptible, infective and im-
mune (‘removed’) individuals, respectively. That is, these variables give the
numbers of individuals in each category divided by some overall constant scal-
ing factor indicative of population size. Writing p(t) = s(t) + i(t) + r(t),
then summing equations (1-3) gives dp/dt = µ(1 − p) so that p(t) → 1 as
t → ∞. Since we are interested in populations in equilibrium we will take
p(0) = 1, and then p(t) = 1 for all t so that s, i, r may be interpreted as pro-
portions of the population. For this model, R0 = β/(γ + µ), and we find that
for R0 ≤ 1 the only feasible equilibrium point is the disease-free equilibrium
(s, i, r) = (1, 0, 0), whilst for R0 > 1 there is also an endemic equilibrium point
(s∗, i∗, r∗) = (1/R0, (1− (1/R0))µ/(γ + µ), (1− (1/R0)) γ/(γ + µ)).

From these two very simple models, we immediately see some common fea-
tures emerging. For R0 ≤ 1, the only equilibrium point is the disease-free equi-
librium. For R0 > 1, in addition to the the disease-free equilibrium there exists
a unique endemic equilibrium point with susceptible proportion s∗ = 1/R0. Our
aim is to investigate the extent to which observations such as these remain valid
for more sophisticated and realistic models. It is worth noting that we shall
not be concerned with the dynamics of the infection process, but only with the
existence, uniqueness, and form of the endemic equilibrium point. In particu-
lar we do not consider stability of equilibria, nor whether the infection process
displays oscillatory behaviour. These are of course crucial properties, but the
objective here is to study the simplest aspects in quite a general context. We
discuss issues of stability briefly in section 4.

There are many aspects of the two models presented thus far that are clearly
gross simplifications of biological reality. Firstly, the ordinary differential equa-
tion formulations imply that individuals’ lifetimes and infectious periods are
exponentially distributed. These are in general not biologically plausible as-
sumptions. In fact, the early work of Kermack and McKendrick on endemic-
ity [18, 19] already allowed an individual’s expected infectivity to be a general
function of time since infection, so that in particular, infectious periods need not
be exponentially distributed. In terms of individuals’ lifetimes, the treatment
in [18, 19] is somewhat less satisfactory. In [18] there is no death except due
to infection, whereas in [19] natural deaths occur at constant per-capita rates,
so that an individual who never becomes infected will live for an exponentially
distributed time. More recent work that does not assume exponentially dis-
tributed lifetimes and infectious periods has generally fallen into two categories.
Firstly, some authors follow the lead of [19] in allowing for a realistic infectious
period distribution while assuming that lifetimes are exponentially distributed,
for instance [10, 12, 16]. This assumption is clearly unrealistic, but can greatly
simplify the analysis. Alternatively, so-called ‘age-structured’ models ([14, 31, 9]
and chapter 22 of [30]) allow for a realistic lifetime distribution, but often not a
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realistic infectious period distribution. In such models the rate at which individ-
uals recover from infection is typically allowed to depend upon the individual’s
age, but not upon the time since infection. This makes the model somewhat
difficult to interpret, since the distribution of an individual’s infectious period
is not straightforward to extract from this framework. For instance, for many
infections a reasonable simplifying assumption is that the infectious period is a
constant. This means that the rate of recovery depends in the most extreme
way upon time since infection, and there is no way to even approximate this
within such an age-structured model. Age-structured models in which the re-
covery rate is allowed to depend upon both age and time since infection are
described and studied in [8, 13, 15, 16]. Closer to the spirit of the current work
is the recent paper [1], in which the authors study a model based upon that
of [18, 19], in that an individual’s expected infectivity is allowed to be a general
function of time since infection, but allowing a general lifetime distribution.

Rather than follow [1, 18, 19] in modelling infectivity as a continuously vary-
ing function, we prefer to treat the infection process as consisting of a sequence
of distinct stages of infection. This formulation in terms of multiple stages may
be regarded as a special form of time-varying infectivity function; however, we
prefer the formulation of stages, which has become standard in modern infection
modelling, for the following reasons. Many infections exhibit clinically mean-
ingful stages, such as a latent period or post-infectious period of temporary
immunity; and some infections (eg HIV) are commonly modelled as comprising
multiple stages of infection. Further, in fitting to data it seems reasonable to
estimate a small number of infectivity parameters, whereas to estimate an con-
tinuously varying infectivity function would present a much greater challenge.

Another simplifying assumption often made is that recruitment to the popu-
lation occurs at constant rate µ. This has the desirable effect that the population
size stabilises at p(t) = 1, providing a simple way to study an infection spreading
in a stable population. However, other recruitment rate functions may be more
biologically plausible, such as a combination of immigration and linear birth
giving rate µ + αp(t) for some µ, α > 0 [18, 19], or logistic recruitment at rate
µ (1− (p(t)/K)) for some µ,K > 0 [20]. We allow quite a general recruitment
rate function.

Finally, a variety of heterogeneities may be present in the population; for in-
stance, heterogeneous susceptibility, heterogeneous infectivity, or heterogeneity
of mixing. We will allow for heterogeneity by stratifying the population into a
finite number of groups. Related previous work includes [11], chapter 23 of [30]
and sections 8.5–8.6 of [28]; in each of these references, exponentially distributed
lifetimes were assumed.

In summary, we aim to study a model for infection which incorporates a
general recruitment rate function; non-exponentially distributed lifetimes and
infectious periods; multiple stages of infection; and heterogeneous population
structure. In contrast to previous authors, we focus specifically upon the form
of the endemic equilibrium point, and the extent to which this form is dependent
upon common simplifying assumptions.
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2 Endemic infection in a homogeneous popula-
tion

Consider a population which at time t consists of P (t) individuals. Individuals
are recruited into the susceptible population according to an inhomogeneous
Poisson process of rate Λ(P (t)), where Λ(·) is some non-negative function. Each
individual lives for a time distributed as a non-negative random variable L before
being removed from the population (eg by death), and we assume E[L] < ∞.
We will assume no disease-related mortality (although see discussion in section 4
below), and so total population size P (t) can be analysed separately from the
infection process. Denote by P ∗ the expected equilibrium population level (or
quasi-equilibrium level in the case Λ(0) = 0), and consider the large-population
limit in which the process p(t) = P (t)/P ∗ may be treated as deterministic. We
have

p(t) =
1

P ∗

∫ t

−∞
Λ(p(u)P ∗) Pr(L > t− u) du =

1

P ∗

∫ ∞
0

Λ(p(t− v)P ∗) Pr(L > v) dv.

In equilibrium, p(t) = 1 for all t, and so P ∗ satisfies

P ∗ = Λ (P ∗)E[L]. (4)

We shall assume Λ(·) is such that equation (4) has a unique positive solution
P ∗. The two most commonly used recruitment functions, constant recruitment
Λ(P ) = µ and logistic recruitment Λ(P ) = µP (1 − (P/K)), both satisfy this
condition. We consider an infection introduced into a population in demographic
equilibrium.

Whenever an individual becomes infected it is assigned an infected life his-
tory distributed as T = (T1, T2, . . . , Tn), independent of its age at infection.
Provided the individual has not yet been removed, it spends times T1, T2, . . . , Tn
in the successive infected stages before returning to the susceptible state. That
is, an individual which becomes infected at age a will be in infected stage j at
age a + u provided

∑j−1
r=1 Tr ≤ u <

∑j
r=1 Tr and L > a + u. An individual in

infected stage j contacts each other individual in the population according to a
Poisson process of constant rate β(j)/P ∗. If the contacted individual is suscep-
tible, it becomes infected; otherwise the contact has no effect. Lifetimes L are
independent between distinct individuals and independent of the recruitment
process; infected life histories T and infectious contact processes are indepen-
dent of the lifetimes and the recruitment process, independent between distinct
individuals and between successive infections of the same individual; infectious
contact processes are independent of each other, of lifetimes, recruitment, and
infected life histories. The formulation in terms of stages allows us to model a
latent (‘exposed’) period between an individual being contacted and itself start-
ing to infect others, a period of temporary immunity following infection, and so
on. For instance, taking n = 3, β(1) = β(3) = 0, and Pr (T3 =∞) = 1 yields an
SEIR model, while if instead E [T3] <∞ we obtain an SEIRS model.
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The basic reproduction number for this model is given byR0 =
∑n
j=1 β

(j)E
[
T 0
j

]
,

where T 0
j is the amount of time that a ‘typical’ individual will spend in infected

stage j before either death or return to the susceptible state. Here ‘typical’
means that the individual is chosen at random from a wholly susceptible popu-
lation in demographic equilibrium. In demographic equilibrium the age distri-
bution has probability density f(a) = Pr(L > a)/E[L], and so

E
[
T 0
j

]
=

∫ ∞
a=0

∫ ∞
u=0

Pr(L > a)

E[L]
Pr

(
j−1∑
r=1

Tr ≤ u <
j∑
r=1

Tr

)
Pr(L > a+ u | L > a) du da

=
1

E[L]

∫ ∞
a=0

∫ ∞
u=0

Pr

(
j−1∑
r=1

Tr ≤ u <
j∑
r=1

Tr

)
Pr(L > a+ u) du da. (5)

Defining A(u) =
∑n
j=1 β

(j) Pr
(∑j−1

r=1 Tr ≤ u <
∑j
r=1 Tr

)
to be the expected

infectivity of an individual infected u time units ago, conditional upon remaining
alive, then

R0 =
1

E[L]

∫ ∞
a=0

∫ ∞
u=0

A(u) Pr(L > a+ u) du da. (6)

Now denote by s(t), i(1)(t), i(2)(t), . . . , i(n)(t) the (deterministic) proportions
of the population in the susceptible state and in each of the infected stages,
respectively, at time t, in the limit P ∗ → ∞. Consider a population initiated
from an equilibrium point

(
s∗, i(1)∗, i(2)∗, . . . , i(n)∗

)
at time t = −∞. Denote

by s∗(a) the density of susceptibles of age a, so that the susceptible proportion
of the population is s∗ =

∫∞
0
s∗(a) da, and denote by i(j)∗(a) the density of

individuals of age a in infected stage j for j = 1, 2, . . . , n. Writing

θ =

n∑
j=1

β(j)i(j)∗ (7)

for the ‘infectious pressure’ acting on each susceptible individual, then we have

s∗(a) =
Pr(L > a) e−aθ

E[L]
.

The infected densities are then given by

i(j)∗(a) =

∫ a

0

θs∗(a− v) Pr

(
j−1∑
i=1

Ti ≤ v <
j∑
i=1

Ti

)
Pr (L > a | L > a− v) dv

=
θ

E[L]

∫ a

0

e−(a−v)θ Pr

(
j−1∑
i=1

Ti ≤ v <
j∑
i=1

Ti

)
Pr (L > a) dv,

so that

i(j)∗ =

∫ ∞
a=0

i(j)∗(a) da =
θ

E[L]

∫ ∞
u=0

∫ ∞
v=0

e−uθ Pr

(
j−1∑
i=1

Ti ≤ v <
j∑
i=1

Ti

)
Pr (L > u+ v) dv du. (8)
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Multiplying equation (8) by β(j) and summing over j,

θ =
θ

E[L]

∫ ∞
u=0

∫ ∞
v=0

e−uθA(v) Pr (L > u+ v) dv du.

Hence either θ = 0 (disease-free equilibrium) or θ satisfies

1 =
1

E[L]

∫ ∞
u=0

∫ ∞
v=0

e−uθA(v) Pr (L > u+ v) dv du, (9)

similarly to equation (3) of [7]. As noted by [1], the right hand side of equa-
tion (9) is a strictly decreasing continuous function of θ, taking the value R0 at
θ = 0, and converging to zero as θ →∞. Hence for R0 ≤ 1 there is no positive
solution to equation (9), while for R0 > 1 there is a unique positive solution.

For the case R0 > 1, denote by T ej the time that a typical individual, infected
when the population is in endemic equilibrium, will spend in infected stage j
before either death or return to the susceptible state. Then

E
[
T ej
]

=

∫ ∞
a=0

∫ ∞
v=0

s∗(a)

s∗
Pr

(
j−1∑
i=1

Ti ≤ v <
j∑
i=1

Ti

)
Pr (L > a+ v | L > a) dv da

=

∫∞
a=0

∫∞
v=0

e−aθ Pr
(∑j−1

i=1 Ti ≤ v <
∑j
i=1 Ti

)
Pr (L > a+ v) dv da∫∞

a=0
e−aθ Pr(L > a) da

(10)

and we can write equation (8) as

i(j)∗ = s∗θE
[
T ej
]

for j = 1, 2, . . . , n. (11)

Define the modified reproduction number Re0 as

Re0 =

∫∞
a=0

∫∞
u=0

e−aθA(u) Pr (L > a+ u) du da∫∞
a=0

e−aθ Pr(L > a) da
. (12)

Noting that Re0 =
∑n
j=1 β

(j)E
[
T ej
]
, then Re0 has a natural interpretation as

the expected total number of potentially infectious contacts originating from an
infected individual whose age at infection is drawn from the age-distribution of
the susceptible individuals in a population in endemic equilibrium. Noting that
E[L] =

∫∞
0

Pr(L > a) da, we see a close parallel between formulae (12) and (6):
the formula (6) for R0 may be recovered from the formula (12) for Re0 simply by
replacing the equilibrium infectious pressure θ with zero, the infectious pressure
in a wholly susceptible population.

Multiplying equation (11) by β(j) and summing over j yields the balance
equation θ = s∗θRe0, implying that either θ = 0 or s∗ = 1/Re0. From equa-
tion (11) we know that i(j)∗ ∝ E

[
T ej
]
, and so the endemic equilibrium point is

given by

s∗ =
1

Re0
,
(
i(1)∗, i(2)∗, . . . , i(n)∗

)
=

1− (1/Re0)∑n
r=1E [T er ]

(E [T e1 ] , E [T e2 ] , . . . , E [T en]) . (13)
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Notice the distinction between Re0 and R0. The basic reproduction num-
ber R0 is defined in terms of a ‘typical’ newly-infected individual drawn from
the age-distribution of a population in demographic equilibrium; on the other
hand, Re0 is defined in terms of a ‘typical’ newly-infected individual drawn from
the age-distribution of the susceptible individuals in a population in endemic
equilibrium. For R0 > 1 we have θ > 0, hence Re0 > 1, and hence the endemic
equilibrium point (13) is feasible precisely when R0 > 1, and when feasible it
is unique. One would expect the difference between R0 and Re0 to be small if
either (i) only a small proportion of the population is infected in endemic equi-
librium; or (ii) the mean infectious period is short relative to the mean lifetime.
We discuss this further in section 4 below.

When modelling an infection in a closed population, the arguments above
simplify as follows. We now suppose that Pr(L =∞) = 1 and Λ(P ) ≡ 0, and we

require that E
[∑n

j=1 Tj

]
<∞. We then have E

[
T ej
]

= E [Tj ] for j = 1, 2, . . . , n

and Re0 = R0, and with these simplifications equation (13) remains valid.
Returning to the model with demography, note that if individuals’ lifetimes L

are exponentially distributed then the remaining lifetime of a newly-infected
individual does not depend upon its current age, so that in this case we again
have Re0 = R0. More generally, from equations (6) and (12) it is straightforward
to find a condition upon the lifetime distibution L that implies an ordering
between R0 and Re0; specifically,

E
[
1− e−ψ(L−v) | L > v

]
E[L− v | L > v]

≥ (≤)
E
[
1− e−ψL

]
E[L]

for all ψ > 0, all v with Pr(L > v) > 0

⇒ Re0 ≥ (≤)R0. (14)

To understand this result, for any non-negative random variable U define the
function

MU (ψ) =
E
[
1− e−ψU

]
E[U ]

for ψ > 0.

We can define an ordering of random variables (analogous to the well-known
Laplace transform ordering) by writing U ≺ V if MU (ψ) ≥ MV (ψ) for all
ψ > 0. Noting that the function

(
1− e−ψu

)
/u is decreasing in u for any ψ > 0,

then it seems reasonable to say that V is in some sense ‘greater than’ U when
U ≺ V . Denoting by Lv the remaining lifetime of an individual that has already
lived v time units, then condition (14) may be written as

Lv ≺ (�)L for all v with Pr(L > v) > 0⇒ Re0 ≥ (≤)R0.

The condition is reminiscent of the NBUL (New Better than Used in Laplace
transform ordering) class of distributions of Yue and Cao [33]. Intuitively, if the
remaining lifetime of an individual that has already lived v time units is (in the
appropriate stochastic sense) shorter than the lifetime of a newborn individual,
then Re0 ≥ R0 because a new case at endemic equilibrium is typically younger
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than one in a näıve population, and hence has the opportunity to live longer
while infectious and transmit more.

For instance, if the lifetime L is constant, it follows that Re0 ≥ R0. Constant
lifetime is a reasonable assumption for a managed livestock population in which
animals are to be slaughtered at a specified age. As an example, consider an
infection that affects 50% of the population in endemic equilibrium, so that
s∗ = 0.5 and hence Re0 = 2. Further suppose that the lifetime L is constant and
the infection is of SI type, so T1 =∞. We then find that R0 = 1.59. With these
assumptions there is thus a substantial discrepancy between R0 and Re0. For an
unmanaged population, a constant lifetime does not seem so plausible. Consider
the UK life tables for 2011-13 [34]. Since the data are presented separately for
males and females, for simple illustrative purposes we consider only the data for
males. With this distribution for L, again for an SI infection with Re0 = 2, we
find R0 = 1.61, so again we see a substantial difference between R0 and Re0. On
the other hand, for an SIR infection with non-random (for simplicity) infectious
period TI = 1 year we find R0 = 1.99. That is, the difference between the values
of R0 and Re0 is now essentially negligible.

The above numerical examples illustrate the point that if the value of s∗

is observed (or estimated from data), then whereas Re0 = 1/s∗ may be im-
mediately estimated, to estimate R0 requires further knowledge (or modelling
assumptions) regarding the lifetime distribution L and the infectivity function
A(·). Secure vaccination coverage requires that a proportion π = 1− (1/R0) of
the susceptible population be vaccinated, since this has the effect of reducing
the basic reproduction number to R̃0 = πR0 = 1. The relationship between
R̃e0 for the vaccinated population and the original Re0 is considerably more com-
plicated, since vaccination reduces the value of the infectious pressure θ, which
affects the value of Re0, given by (12), in a non-linear manner.

3 Population heterogeneities

A variety of heterogeneous mixing structures may be modelled by supposing the
population to be divided into k distinct groups. For instance the groups may
represent spatially isolated patches, eg cities (a ‘metapopulation’ model). We
assume for simplicity that the distributions of an individual’s lifetime L and of
infected life histories T do not depend upon the group. We allow heterogeneity
in the infection rate parameters, and in the birth processes (and hence group
sizes), as follows.

For g = 1, 2, . . . , k, group g consists at time t of Pg(t) individuals, with
P(t) = (P1(t), P2(t), . . . , Pk(t)). Individuals are recruited into the suscepti-
ble population of group g according to an inhomogeneous Poisson process of
rate Λg(P(t)) for some non-negative functions Λg(·), and we denote Λ(P) =
(Λ1(P),Λ2(P), . . . ,Λg(P)). The expected equilibrium population level P∗ sat-
isfies the balance equation

P∗ = Λ(P∗)E[L]. (15)
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We assume that equation (15) has a unique non-zero solution with P ∗g ≥ 0 for
g = 1, 2, . . . , k, and that P ∗g > 0 for g = 1, 2, . . . , k. Denote P ∗ = P ∗1 +P ∗2 +· · ·P ∗k
and fg = P ∗g /P

∗. We consider an infection introduced into a population in
demographic equilibrium.

While in infected stage j (j = 1, 2, . . . , n), a group g individual makes in-
fectious contacts with each individual in group h at the points of a Poisson

process of rate β
(j)
gh /P

∗. For an individual chosen at random from group g of a
wholly susceptible population in demographic equilibrium, the expected number
of group h infectious contacts during one infected life history is thus

m
(0)
gh = fh

n∑
j=1

β
(j)
ghE

[
T 0
j

]
(16)

with E
[
T 0
j

]
being given by equation (5). We assume that the next genera-

tion matrix M (0) with entries
{
m

(0)
gh

}
is irreducible, meaning that an infection

initiated in any one group can eventually spread to all groups. The basic repro-
duction number R0 is given by the maximal eigenvalue of M (0).

Denote by s∗g the susceptible proportion of group g in endemic equilibrium,

and by i
(j)∗
g the proportion of group g in infected stage j. Denote by T

e (g)
j

the time that a typical group g individual, infected when the population is in
endemic equilibrium, will spend in stage j before death or recovery. With

θh =

k∑
g=1

n∑
j=1

i(j)∗g fgβ
(j)
gh , (17)

then we have

E
[
T
e (g)
j

]
=

∫∞
a=0

∫∞
v=0

e−aθg Pr
(∑j−1

i=1 Ti ≤ v <
∑j
i=1 Ti

)
Pr(L > a+ v) dv da∫∞

a=0
e−aθg Pr(L > a) da

.

In endemic equilibrium, for each group g, by similar arguments to the ho-
mogeneous population case we find(

i(1)∗g , i(2)∗g , . . . , i(n)∗g

)
=

1− s∗g∑n
r=1E

[
T
e (g)
j

] (E [T e (g)1

]
, E
[
T
e (g)
2

]
, . . . , E

[
T e (g)n

])
. (18)

In order to evaluate E
[
T
e (g)
j

]
and s∗g, it remains to determine θ = (θ1, θ2, . . . , θk).

Writing Agh(u) =
∑n
j=1 β

(j)
gh Pr

(∑j−1
r=1 Tr ≤ u <

∑j
r=1 Tr

)
, then from defini-

tion (17) and the multigroup version of equation (8) it follows that θ satisfies
the balance equations

θh =

k∑
g=1

θgfg
E[L]

∫ ∞
u=0

∫ ∞
v=0

e−uθgAgh(v) Pr(L > u+ v) dv du (h = 1, 2, . . . , k). (19)
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Clearly (19) admits the solution θ = 0 corresponding to the disease-free
equilibrium. For R0 ≤ 1 we can show (see appendix) that this is the only
feasible solution. In the case R0 > 1, proving existence and uniqueness of
a non-zero solution does not seem straightforward. In order to make further
progress we restrict to the case that lifetimes L are exponentially distributed,
with mean 1/µ. We then have

s∗g =

∫ ∞
a=0

Pr(L > a)

E[L]
e−aθg da =

µ

µ+ θg
.

Writing i∗g = 1 − s∗g and bgh =
∫∞
u=0

∫∞
v=0

Agh(v) Pr(L > u+ v) dv du
/
E[L],

equation (19) reduces to

i∗h = (1− i∗h)

k∑
g=1

i∗gfgbgh (h = 1, 2, . . . , k). (20)

This equation has been previously obtained in the context of a multigroup SIS
model, in a closed population [21] and in an open population [28] (with ex-
ponentially distributed lifetimes). It follows from theorem 8.2 of [28] that if
M (0) is irreducible with R0 > 1 then there exists a unique non-zero solution
(i∗1, i

∗
2, . . . , i

∗
k) of equations (20) in [0, 1]k, and that 0 < i∗g < 1 for g = 1, 2, . . . , k.

Equation (20) is identical to equation (6) of [4], where a multigroup SIS model
in a closed population was the object of study. Hence for our current, consid-
erably more general, model we can immediately invoke results from section 5
of [4], and in particular, writing F = diag (f1, f2, . . . , fk), we have the following
three important special cases.

(i) Symmetrical case. Suppose that the columns of the matrix FM (0)F−1 all
sum to the same value. That is, the average number of infectious contacts
received by a specified susceptible individual from an infected individual
chosen uniformly at random from the whole population does not depend
upon the group to which the susceptible individual belongs. Then R0 is
equal to this common value, and equations (20) admit the symmetrical
solution i∗g = 1 − (1/R0) for g = 1, 2, . . . , k. The endemic susceptible

proportion is thus s∗ =
∑k
g=1 fgs

∗
g = 1/R0.

(ii) Heterogeneous infectivity. If heterogeneity is in infectiousness only, so that
bgh = λg for some λ1, λ2, . . . , λk, then the columns of FM (0)F−1 all sum

to the common value
∑k
g=1 fgλg, so that s∗ = 1/R0 with R0 =

∑k
g=1 fgλg.

(iii) Separable case. Suppose now that bgh = λgµh for some infectivity param-
eters λ1, λ2, . . . , λk and susceptibility parameters µ1, µ2, . . . , µk. Then the
solution to equations (20) is i∗g = Dµg/ (1 +Dµg) for g = 1, 2, . . . , k, where

D is the unique positive value satisfying
∑k
g=1 (fgµgλg/ (1 +Dµg)) = 1.

Without loss of generality we can label the groups such that µ1 ≤ µ2 ≤
· · · ≤ µk. If susceptibility and infectivity are positively correlated, i.e.

11



∑
g λgµgfg ≥

(∑
g λgfg

)(∑
g µgfg

)
, or if λ1µ1 ≤ λ2µ2 ≤ · · · ≤ λkµk,

then s∗ ≥ 1/R0. Conversely, if λ1µ1 ≥ λ2µ2 ≥ · · · ≥ λkµk then s∗ ≤ 1/R0.

The symmetry condition of (i) above is in essence the same as the condition
of Theorem 9.1 of [23], where it is shown that under this condition the final size
of a short-lived epidemic outbreak is the same as in the homogeneously mixing
case. Heterogeneous infectivity as described in (ii) could, for instance, be used to
represent the existence of a group of super-spreaders, via a two-group model with
λ1 � λ2. The existence of super-spreaders has been proposed for a variety of
infections, eg severe acute respiratory syndrome (SARS). Result (ii) shows that,
under the assumption of exponentially distributed lifetimes, such heterogeneity
in infectivity does not affect the endemic prevalence level. Intuitively, if all
uninfected individuals have equal susceptibility, then whenever an infectious
contact occurs it is equally likely to be directed towards any individual in the
population, so that in equilibrium the infected proportion will be the same in
every group (and consequently equal to the homogeneous population value).
For more general heterogeneous structures, however, numerical examples such
as those in figure 3 of [4] show that the endemic prevalence level can be very
different from that of a homogeneous population. This is in line with the well-
known observation (eg section 10 of [23]) that such social heterogeneities can
greatly affect epidemic final size, for a given value of R0. For the separable
case (iii), we have exhibited conditions under which the endemic level may be
bounded (either above or below) by the homogeneous population value; case (iii)
combines theorems 8 and 9 of [4], where full details of the proof may be found.

In terms of inferring the pattern of heterogeneity from data, the observed
values s∗1, s

∗
2, . . . , s

∗
k clearly do not contain enough information to estimate all k2

of the parameters {bgh} from equations (20). Progress can be made if the het-
erogeneity is known (or assumed) to take some more specific form. For instance,
if heterogeneity is in susceptibility only, so that bgh = µh, then equations (20)
may be solved to give

µh =
1− s∗h
s∗h

/ k∑
g=1

(
1− s∗g

)
fg.

On the other hand, if infectiousness and susceptibility are both assumed pro-
portional to the same underlying measure of social activity, so that bgh = cgch
(sometimes referred to as proportionate mixing), then we find

ch =
1− s∗h
s∗h

/√√√√ k∑
g=1

(
1− s∗g

)2
fg

s∗g
.

That is, either susceptibility µh or activity level ch for group h is found to be
proportional to ((1/s∗h)− 1).
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4 Discussion

For homogeneous populations (section 2), we have demonstrated two simple
general principles. First of all, a balance condition: in order to maintain en-
demic equilibrium, the effective reproduction number R(t) (expected number of
secondary cases caused by a typical primary case at time t) must remain con-
stant at R(t) = 1. If individuals’ lifetimes are exponentially distributed, then
R(t) = R0s(t), giving the well-known endemic level formula s∗ = 1/R0. When
lifetimes are not exponentially distributed, this formula must be modified to
s∗ = 1/Re0, with Re0 defined to allow for the difference between the remaining
lifespan of a typical newly-infected individual in endemic equilibrium, and that
of a typical newly-infected individual in a wholly susceptible population. This
contradicts the conclusion of [12] that ‘the asymptotic behaviour of the mod-
els with distributed delays is the same as ... the ordinary differential equation
models’, because their analysis was based throughout upon the assumption that
individuals’ lifetimes are exponentially distributed. In practice, the difference
between Re0 and R0 may not be great, in particular if the infection is endemic at
a low level, and so has little effect upon the age-distribution of the susceptible
part of the population, or if the infectious period is sufficiently short that the
chance of natural death during the infectious period may be neglected (note
that it has been previously remarked, in proposition 5.2 of [16], that R0 ≈ 1/s∗

provided E[L] is short enough). Consequently, for many infectious diseases of
humans, our result may be interpreted as demonstrating the robustness of the
formula s∗ = 1/R0, which would be expected to provide a very good approxima-
tion. This is confirmed by a numerical example in section 2 above, in which we
deliberately took a high proportion (50%) of the population to be infected, and a
long infectious period (1 year), and even under these circumstances found a neg-
ligible difference between R0 and Re0. On the other hand, for livestock infections
which do not necessarily cause serious symptoms in the livestock but do carry
a risk of food poisoning to humans (eg Campylobacter in poultry, Salmonella
in pigs), the infectious period may be a substantial fraction of the individual’s
lifetime, and the difference between R0 and Re0 may be significant. Similarly,
for some infections of humans the duration of infection can be of the same order
as the human lifespan, as for instance in the case of Tuberculosis. The impact
of a realistic lifetime distribution upon the behaviour of a Tuberculosis model
has recently been studied in [2].

Our second general principle is an ergodic-type result: the proportion of the
population in each infected stage in endemic equilibrium is proportional to the
expected time spent by an individual in that stage between infection and death
or return to susceptibility. This principle is stated as the ‘microcosm principle’
for a general population process in equilibrium in [25], although without formal
justification. Some care is required in evaluating the relevant expectations,
since the distribution of the remaining lifespan of a typical infected individual
depends upon the prevalence level of infection. Formulae (9,10) make precise
the relationship of these expectations to basic parameters of the model.

We have not considered dynamical behaviour of the process, and in par-
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ticular stability of the endemic equilibrium point. The usual situation to be
expected is that for R0 ≤ 1, the only feasible equilibrium point is the disease-
free equilibrium, and this point is globally asymptotically stable; for R0 > 1,
there also exists a unique feasible non-zero equilibrium point, the endemic equi-
librium, and this point is globally asymptotically stable. It is important to note
here that for biologically plausible population sizes, any deterministic model
should be regarded as a crude first approximation to a more realistic stochastic
formulation, and in stochastic formulations eventual disease extinction typically
occurs with probability 1, whatever the value of R0. Nevertheless, determinis-
tic stability analysis provides valuable information. If the endemic equilibrium
point is globally asymptotically stable, this can be interpreted as meaning that
provided the infection succeeds in infecting a significant proportion of the pop-
ulation, then it is likely to persist in a state close to the deterministic endemic
equilibrium for a long time before stochastic fluctuations lead to eventual ex-
tinction. A full stability analysis of our most general model seems challenging.
Key existing results include those of [1, 15] for a homogeneous population, and
of [21, 22] for heterogeneous populations. The models of [1, 15] differ from our
model of section 2 in that recruitment into the population occurs at constant
rate, and no distinction is made between stages of infection but rather a gen-
eral infectivity function A(u) is used. Proposition 6.3 of [15] gives sufficient
conditions for local asymptotic stability of the endemic equilibrium point. For
the case of exponentially distributed lifetimes L, it is shown in [1] that the en-
demic equilibrium point is locally asymptotically stable for R0 > 1. Whether
this is the case for more general lifetime distributions is left as an open prob-
lem. Similarly, [21] provides a full global stability analysis for a multigroup SIS
model with exponentially distributed lifetimes and exponentially distributed in-
fectious periods, while [22] give corresponding results for a multigroup SEIR
model with exponentially distributed lifetimes and general latent and infectious
period distributions.

There are a number of obvious extensions of our model that could be con-
sidered. First of all, consider the infection process. For a population containing
S susceptible and I infective individuals, we have assumed that new infections
arise at average rate βSI. A variety of alternative infection rate functions β(S, I)
have been proposed in the literature ([3] and references therein). In particular,
a popular formulation is that new infections arise at rate βSI/P , where P (t)
is the current population size. Our results remain valid for any infection rate
function of the form β(P )SI where β(·) is a positive function of population
size, since we have looked only at populations in demographic equilibrium, i.e.
with P (t) remaining constant. Secondly, we have assumed no disease-induced
mortality. Denoting by P ∗0 the population level in demographic equilibrium in
the absence of infection, and by P ∗ the population level in endemic equilib-
rium, then one would expect disease-induced mortality to imply that P ∗ < P ∗0 .
One would anticipate that equations (13) will remain valid, except that now
s∗, i∗1, . . . , i

∗
n represent proportions of a population of size P ∗, rather than P ∗0 .

Finding the level P ∗ in terms of basic parameters of the model seems likely to be
challenging, since the level depends upon the interaction between demographic
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and infection processes. A third possible extension would be to allow an indi-
vidual’s susceptibility to depend upon their age, or for infected life histories T
and infectivity parameters β(j) to depend upon the age at which the individual
became infected. In particular, so-called ‘childhood infections’ such as measles,
mumps, chicken pox etc. can display rather different symptoms in adults than
in children. If susceptibility and the progression of infection are allowed to de-
pend upon the age at infection, these factors will contribute to the distinction
between R0 and Re0.

In heterogeneous populations, it becomes more difficult to apply our general
balance condition, because precisely what is meant by a ‘typical’ primary case
becomes more complicated. Our ergodic-type result for the proportions in vari-
ous infected stages remains valid (equation (18)), but evaluating the susceptible
proportions s∗g is not straightforward, and we were obliged to restrict to expo-
nentially distributed lifetimes. In this case, we see that if heterogeneity is only in
infectiousness, or under a more general symmetry condition (that the columns
of FM (0)F−1 all sum to the same value), then the formula s∗ = 1/R0 remains
valid. In general, however, this is not the case, and instead we have exhibited
conditions under which the susceptible proportion may be bounded (either above
or below) by 1/R0. Establishing existence and uniqueness of a non-zero solu-
tion to equations (19) for non-exponentially distributed lifetimes L remains an
important open problem. Finally, in dealing with heterogeneous populations we
assumed that lifetimes L and infectious life histories T are identically distributed
across all groups. This assumption was made to avoid overly cumbersome nota-
tion, and is not unreasonable if the groups represent spatially distinct groupings
of an otherwise homogeneous population. If groups represent categories such
as male and female, or different species (eg humans and mosquitoes), then this
assumption would need to be relaxed.

A Appendix

We demonstrate that for R0 ≤ 1 equation (19) has no non-zero solution.
For ξ ≥ 0 and g, h ∈ {1, 2, . . . , k}, define

cgh(ξ) =

∫ ∞
u=0

∫ ∞
v=0

e−uξAgh(v) Pr(L > u+ v) dv du.

If cgh(0) > 0 then cgh(ξ) is a decreasing function with cgh(ξ) > 0 for all ξ ≥
0 and cgh(ξ) → 0 as ξ → ∞. Since we have assumed the matrix M (0) is
irreducible, it follows that the matrix C(ξ) with entries cgh (ξg) is irreducible
for any ξ = (ξ1, ξ2, . . . , ξk) ≥ 0 (the inequality to be interpreted elementwise).
For ξ ≥ 0, denote by ρ(ξ) the dominant eigenvalue of the matrix with elements
fgcgh (ξg) /E[L]. It follows from the Perron-Frobenius theorem for irreducible
matrices (theorem 1.5 of [29]) that if 0 ≤ ξ1 ≤ ξ2 with ξ1 6= ξ2 then ρ(ξ2) <
ρ(ξ1). Now ρ(0) = R0, and so if R0 ≤ 1 then ρ(ξ) < 1 for every non-zero ξ ≥ 0.
Consequently for R0 ≤ 1 the disease-free equilibrium provides the only solution
of equations (19).
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