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Abstract

We will be concerned with optimal intervention policies for a continuous-time stochastic SIR (suscepti-
ble — infective — removed) model for the spread of infection through a closed population. In previous
work on such optimal policies, it is common to assume that model parameter values are known; in reality,
uncertainty over parameter values exists. We shall consider the effect upon the optimal policy of changes in
parameter estimates, and of explicitly taking into account parameter uncertainty via a Bayesian decision-
theoretic framework. We consider policies allowing for (i) the isolation of any number of infectives, or (ii)
the immunisation of all susceptibles (total immunisation). Numerical examples are given to illustrate our
results.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In light of recent emerging and re-emerging infections and threat of deliberate infection, the
mathematical modelling of disease spread is now as important and pertinent a topic as ever. In turn,
so too is the study of efficient and effective intervention strategies. One approach is via mathematical
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control theory. Wickwire [1] provides a thorough survey of applications of mathematical control
theory to infectious disease models up to 1977; a succinct discussion of more recent work is provided
by [2]. See also Chapter 7 of [3]. In the main, such work has assumed that the values of model param-
eters are known exactly, clearly an unrealistic assumption in practice. A notable exception in the
context of continuous control (that is, when the form of intervention is to alter the rates at which
certain transitions occur) is the paper [4] by Cai and Luo. Starting with an initial guess of the un-
known parameter value they describe a procedure which updates this estimated value as the epidem-
ic progresses, computing the optimal policy at any time based upon the current estimated value.
They prove that an optimal policy exists and may be obtained by solving an appropriate Bellman
optimality equation after each transition of the process, but do not investigate the form of the solu-
tion. In contrast to their approach, we consider a Bayesian decision-theoretic approach (see, for
example, [5,6]), so that uncertainty about parameter values is expressed via a distribution on the
set of possible values, rather than a point estimate.

Our approach also differs from that of [4] in that we consider intervention in the form of im-
pulse control. That is, we can intervene to instantaneously change the state of the system, for in-
stance by isolating an infective individual from the susceptible population. Such controls have
been studied for the case of the general stochastic epidemic model (one of the most widely studied
stochastic epidemic models, see [7], chapter 6) by Abakuks [8-10]. The intervention policies con-
sidered allowed for isolation of infectives, immunisation of susceptibles, or both. The results of
Abakuks were extended to models with more general infection and removal rate functions by
Clancy [11], while Kyriakidis [12,13] and Kyriakidis and Dimitrakos [14] employed a similar ap-
proach to analyse the optimal control of two competing diseases. The assumption that interven-
tion can be effective instantaneously is of course somewhat unrealistic in practice, but
mathematically a reasonable starting point.

In this paper, we consider the effect of parameter uncertainty on optimal control policies for the
general stochastic epidemic model. First of all, in Section 2, we describe our model and forms of
possible intervention and recall the relevant results from the literature when parameter values are
supposed known. In Section 3, we consider the effect of changes in assumed parameter values,
providing full proofs for the optimal isolation policy and stating corresponding results for the
optimal isolation-or-total-immunisation policy. In Section 4, we show how to calculate optimal
policies when parameter uncertainty is explicitly taken into account, and look at the effect of treat-
ing various different point estimates as though they were the true parameter value.

All numerical work was carried out using Matlab 6.5 on a desktop PC.

2. The model and previously known results

We consider the classical continuous-time SIR (susceptible — infective — removed) epidemic
model known as the general stochastic epidemic model ([7] chapter 6). The population undergoing
the epidemic is assumed to be of fixed size, so that there is no immigration into or emigration from
the population, and to mix homogeneously. These assumptions are plausible for a small population
and an epidemic of short duration. The population at time ¢ is supposed to consist of X(¢) suscep-
tible, Y(z) infective and Z(¢) removed individuals. Since the population is closed,
X (1) + Y(¢) + Z(¢) remains constant, so the process is completely described by {(X(z), Y(¢)): = 0}.
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Susceptible individuals are uninfected and vulnerable to infection; infective individuals are able to
infect susceptibles (there being no latent period); removed individuals have no effect on the spread
of infection having concluded their infectious period and being immune to further infection.
The state of the population evolves according to a continuous-time Markov process with transition
rates

P((X(t+0t),Y(t+0t) = (x—1,y+ D|(X(),Y(t) = (x,¥)) = Pxyot + o(d1), }

PUX(+ 00, Y1+ 80)) = (x,y — DIX(), Y(1)) = (v.3)) = 18t + 0(a), M

where > 0 is the infection rate parameter and y > 0 the removal rate parameter, and all other
transitions have probability o(07).

In terms of the relative removal rate parameter p = y/f, we define the embedded jump-chain
transition probabilities

by 0
= = 2
Py =3 o Ty = P (2)

Note that for the general stochastic epidemic model p,;, and ¢, are independent of y. However,
for other epidemic models this may not be the case [11].

The simplest cost function we will consider is the non-intervention expected cost function, or
expected final size of the epidemic. The final size is the total number of susceptibles to be infected
during the entire duration of the epidemic. Denoting by C,(x,y) the expected final size of the
uncontrolled epidemic starting at (x,y), then C,(x,y) is determined by

Cﬂ(xvy) :pxy(l + Cﬂ(x - 17y+ 1)) +Qxycﬂ(xvy_ 1) for X,y = 17 (3)
C,(x,0) =0 forx > 0,C,(0,y) =0 for y > 0. (4)

We shall consider two forms of intervention: isolation of any number of infective individuals
from the susceptible population; or the choice of either isolation of infective individuals or immu-
nisation of the whole susceptible population. The cost of an individual becoming infected shall be
fixed as the unit cost, the costs of isolation and immunisation being defined relative to the cost of
infection. For the general stochastic epidemic model, Abakuks [8-10] investigated such policies
assuming parameter values to be known. Abakuks [8] also considered policies allowing for the
immunisation of any number of susceptibles, but was unable to obtain satisfactory analytical re-
sults due to the complicated form of the optimal policy.

Consider an impulse control policy which at any time allows for the isolation of any number of
infectives at some fixed cost L per individual. Defining W, ,(x,y) to be the expected future cost of
waiting for a single transition to occur naturally and adopting an optimal policy from then on-
wards we can recursively calculate the expected future cost V7 ,(x,y) of adopting an optimal pol-
icy starting at (x,y) by

WL,p(xvy) :pxy(l + VL,p(x_ 17y+ 1)) +quVL,p(xvy_ 1)7 X,y > 17 (5)

VL,p(xvy) = mln{L + VL,p(xvy - 1)7 WL,p(xvy)}v X,y = 17 (6)

with boundary conditions V; ,(x,0) =0 for x > 0, V; ,(0,y) =0 for y > 0. In state (x,y), the
optimal policy is to isolate an infective if L + V; ,(x,y — 1) < Wy ,(x,y) and not to intervene if
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L+ Vi (x,y —1)> W ,(x,y). We follow [9] in adopting the convention that if L + V7 ,(x,y — 1)
= W ,(x,p) then we isolate an infective. Eq. (6) is the dynamic programming equation, see, for
example, equation (6.5) of [5]. Note that since there is a positive probability that at least one suscep-
tible avoids infection, then Vz_,(x,y) < Cy(x,y) < x.

With this cost function Abakuks [8,9] proved that one can determine a boundary sz ,(x) such
that for 1 <y < sz ,(x) we intervene to isolate all the infective individuals while for y > s _,(x) we
do not intervene. The isolation boundary is given by

sLp(x) =max{y : L+ Vy,(x,y —1) < Wy, (x,p)} = max{y: Ly < W,(x,y)} (7)
for x = 1, and since the optimal isolation policy is a total isolation policy it follows that
VL,p(xvy) = min{Lyv WL,p(xvy)}v X,y = 1.

Abakuks [8,9] further proved that V7 ,(x,y) is a non-decreasing function of each of x,y, and that
Srp(X) < spp(x + 1) for x > 0.

Consider now a policy which at any time allows the immunisation of either all or none of the
susceptibles. Abakuks [10] proved that for this policy an immunisation boundary exists, and some
associated properties. However, rather than studying the total immunisation policy alone, let us
consider a policy which allows for either isolation or total immunisation. That is, at any time we
may isolate any number of infective individuals each at a cost L >0, immunise the whole
susceptible population at a cost 4 + xK, where 4 > 0,0 < K<1, A + K> 0, or else do nothing.
Note that for K > 1 the cost of non-intervention is always less than the cost of immunisation and
we simply have the isolation policy as defined above. Clearly, immunisation terminates the
epidemic so we will never immunise susceptibles and isolate infectives simultaneously.

Denote by V; 4k ,(x,p) the expected future cost of adopting an optimal policy starting from
(x,y) and by Wy 4k ,(x,y) the expected future cost of waiting for a single transition to occur
and adopting an optimal policy from then onwards. We then have

WL,A,K,p(xvy) = pxy(l + VL,A,KJJ('X_ 17y+ 1)) +quVL7A7K7P(xvy_ 1) for X,y = 1,
VL,A,K,p(xvy) = min{4 +xK,L + VL,A,K,p(xvy - 1), WL,A,K,p(xvy)} forx,y > 1, (8)
VL7A7K7P(X,O) = 0 forx = 0, VL,A,K,p(an) = ( for y = 0,

where p,,.q,, are defined by (2).

In any given state (x,y), if Wi 4 g ,(x,y) <min{A4 + xK,L + V; 4k ,(x,y — 1)} we do nothing; if
L+ Vi akpx,y—1)<A+xKand L+ Vi 4k (x,y — 1)< Wi _4k,(x,y) we isolate an infective;
and if 4 +xK<min{L+ V;_4g,(x,y —1), W 4 k,(x,y)} we immunise the entire susceptible
population. That is, when costs are equal, total immunisation takes precedence over isolation,
which in turn takes precedence over non-intervention.

Abakuks [10] established the existence of integers S;_4 x ,(X) and Ry, x,,(x) such that the opti-
mal policy at (x,y) isolates all infectives for 1 <y < S 4k ,(x), takes no action for Sy 4 x ,(X)
<y < Ry 4.k, (x), and immunises all susceptibles for y > R; 4 x ,(x). Abakuks [10] further proved
that V7 4k ,(xX,p) is a non-decreasing function of each of x,y, that S7_4 x ,(x) is non-decreasing in
x, and that Sy 4 x ,(x) < sz, (x), where 57 ,(x) is the isolation boundary determined by (7).
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3. Effect of changes in parameter values

In this section, we examine the effects on expected costs and intervention strategies (computed
under the assumption that parameter values are known) when we alter the epidemic model param-
eter values. In Section 3.1, an optimal isolation policy is considered; in Section 3.2 corresponding
results are given when immunisation of all susceptibles is allowed as well as isolation of infectives.

3.1. Isolation policies

We consider first the optimal cost function for the isolation policy.

Theorem 3.1. Given any x = 0,y > 0, then Vi ,(x,y) is a non-increasing function of p. Further,
Vi p(x,y) = min{Ly,x} as p — 0 and Vy ,(x,y) = 0 as p — oo.

Proof. We first show that V' ,(x,y) is a non-increasing function of p, by induction. The result is
true for x = 0, since V7 ,(0,y) =0 for y > 0, by definition. Suppose that for a particular x > 1,
Vi.,(x — 1,y) is a non-increasing function of p for y > 0. We know that for y =0, V' ,(x,y) = 0.
Suppose that for some y > 1, V; ,(x,y — 1) is a non-increasing function of p. From (5) and (2),

for p,e = 0,
X p+e
Wipielx,y) =——— (1 4+ Vi prelx — 1, 1 — Vi ex,y—1
Lp+ (x,») p+€+x( T Vip+ (x Y+ ))+p+e+x Lp+ (x,y )
X p
:p+x(1+VL’p+€(x_1’y+1))+p+xVL’p+€(x’y_1)
€x

- (p+et+x)p+x) T Viprele =1Ly +1) = Vipielr,y = 1)).

By [10], Corollary 2.4, we have 1 + V; ,1(x —1,y+1) =V 1 (x,y — 1) = 0, and so

X p
Wi, y) <——(1+Vp ppelx — 1, 1 —— Vi prelx,y—1).
Lp+ (x,») p+x( T Vip+ (x Y+ ))+p+x Lp+ (x,y )

Subtracting Wy ,(x,y), we obtain

X
Wipre(X,y) — Wi,(x,y) < E(VL,;Hre(x —Ly+1)=Vi,x—1,y+1))

p
+E(VL,p+6(xvy —1) = Vi,(x,y—1))

<0,
by our inductive hypotheses. Then (6) gives
Vipre(x,y) =min{L + Vi pielx,y = 1), Wi pie(x, v)}
<min{L + V,(x,y = 1), W ,(x,y)}
=V5,x,p).

So by induction on y and x, V7 ,(x,y) is a non-increasing function of p for x,y > 0.
Next, to show that V. ,(x,y) — min{Ly,x} as p — 0, notice that the result is true for x = 0. From
(2), pxy — 1 and gy, — 0 as p — 0. Suppose that for a particular x > 1, for all y, we have
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Vip(x —1,y) = min{Ly,x — 1} asp — 0. Then from(5), since V'; ,(x,y — 1)isbounded above by x,
we have Wp ,(x,y) — 1+ min{L(y +1),x — 1} as p — 0. Hence (6) implies that V7 ,(x,y) —
min{Ly,L + x,Ly + L + 1,x} =min {Ly,x} as p — 0. By induction on x, the result follows.

Finally, to show that V; ,(x,y) — 0 as p — oo, notice that the result is true for y = 0. From (2),
pxy — 0 and gy, — 1 as p — oo. Suppose that for a particular y > 1, for all x, Vy ,(x,y —1) — 0
as p—oo. Since Vi, (x—1, y+1) is bounded by x —1 then (5) gives Wy ,(x,y) <x
Dyt Gy Vi p(x,y —1) — 0 as p — oo. Hence (6) implies that V7 ,(x,y) — 0 as p — oco. By
induction on y, the result follows. [

Having looked at the effect of changes in the value of p on the optimal cost function V' ,(x,y)
we now go on to consider the effect upon the isolation boundary s, ,(x).

Theorem 3.2. For x >0, the isolation boundary s; ,(x) is non-increasing in p. Further,
Sp.p(x) = max{y € Z:y <x/L} as p — 0 and sy ,(x) — 0 as p — oc.

Proof. Suppose for some fixed p that x,y are such that y <s; ,(x). That is, the optimal policy
requires that we isolate all of the infectives at (x,y). Then V; ,(x,y) = Ly and for any € > 0 with
e < p, from Theorem 3.1, V; ,_(x,y) = Vi ,(x,y) = Ly. So V; ,_(x,y) = Ly which implies that
y <sp,-x), and it follows that s, ,(x) is non-increasing in p.

Abakuks [9] proved for p > 0 that s;_,(x) < x/L for all x. Take x,y > 1 such that y < x/L. Then
from the proof of Theorem 3.1, W ,(x,y) — min{Ly + L + 1,x} as p — 0, so that for sufficiently
small p >0, Wy ,(x,y) > Ly. Hence for sufficiently small p > 0 we have y < sz ,(x), and it follows
that s, ,(x) = max{y € Z:y <x/L} as p — 0.

By Theorem 3.1, given x > 0 then V7 ,(x,1) — 0 as p — oco. Since the intervention cost is fixed
at L then s; ,(x) = 0 for all sufficiently large p. [

Fig. 1 shows these properties for three different susceptible population sizes.

0 5 10 15 20 25 30 35 40 45 50
p

Fig. 1. The isolation boundary sz ,(x) against p for L = 1. Upper line represents case when x = 30, middle line for
x =20 and lower line for x = 10.
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Intuitively, Theorems 3.1 and 3.2 are as one would expect. For instance, suppose that we under-
estimate the value of p, thereby regarding the infection as in some sense more severe than is in
reality the case. Then Theorem 3.2 shows that we will intervene by isolating infectives whenever
it is optimal to do so, but that we may also intervene when this is not optimal; Theorem 3.1 shows
further that we will not under-estimate, but may over-estimate, the cost of the optimal policy. If
we over-estimate p, converse conclusions apply.

In terms of the problem of deciding whether or not to intervene when the true value of p is un-
known, if we know the state (x,y) of the population, then we intervene by isolating all infectives if
p < po(x,y) for some pg(x,y) with 0 < pg(x,y) < 0o and otherwise do not intervene. Thus it suffices
to know whether p lies above or below pg(x,y), and it is not necessary to know the value of p
exactly. However, as the state (x,y) of the process evolves, the relevant threshold value py will also
change, and the process may well pass through states (x,y) such that the threshold value pg(x,y)
lies within the range of plausible p values.

Although our primary interest is in uncertainty about the epidemiological parameters /3,7, or
equivalently uncertainty about p, it is also possible that the isolation cost L will not be known
exactly. Thus by analogy with the above results concerning the effect of changes in p, we have
the following concerning the effect of changes in L.

Theorem 3.3. Given x > 0,y > 0, then Vi ,(x,y) is a non-decreasing function of L. Further,
Vip(x,y) = 0as L —0and Vi ,(x,y) = Cy(x,p) as L — oc.

Proof. We first show that V' ,(x,y) is a non-decreasing function of L, by induction. The result is
true for x = 0, since V7 ,(0,y) = 0. Suppose that for a particular x > 1, V; ,(x — 1,y) is a non-de-
creasing function of L for all y. We know that V7 ,(x,0) =0 for x > 0, L > 0. Suppose now that
for some y > 1, V7 ,(x,y — 1) is a non-decreasing function of L. Then

X p
WL+e,p(xvy) - WL,p(xvy) :m(l + VL+e,p(x_ 17y+ 1)) +,0 +xVL+e,p(xvy_ 1)
X p
— 1+V —1 1)) — V —1
p+x( + L,p(x 7y+ )) ,0+X L,p(xvy )
> 07

by our inductive hypotheses. Thus

VL+e,p(an/) = mln{L + e+ VL+e,p(x7y - 1)7 WLJre,p(xvy)}
> mln{L + VL,p(xvy - 1)7 WL,p(xvy)}
— VL,p(xvy)'

So by induction on y and x, Vy ,(x,y) is a non-decreasing function of L for x,y > 0.

Next, since Vg ,(x,y)=min{Ly,W; ,(x,y)} it is clear that V; ,(x,y) -0 as L — 0 for any
x,y = 0.

Finally, to show that V; ,(x,y) — C,(x,y) as L — oo, note that for L > x the cost of isolating a
single infective is greater than the cost due to the infection of all susceptibles, so that it is optimal
never to isolate any infectives and hence V; ,(x,y) = C,(x,y) for L > x.
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We conjecture that the isolation boundary sy ,(x) is non-increasing in L for allx > 0, L > 0
and numerical evidence supports this. We have only been able to obtain partial results (see
[15]); however, we do have the following.

Theorem 3.4. Given x > 1, then sy ,(x) — o0 as L — 0 and sy ,(x) — 0 as L — oc.

Proof. Fix x,y > 1. From (5), Wy ,(x,y) = py, = x/(x + p) > 0, so that for sufficiently small L we
have Ly < W; ,(x,y) and the optimal policy at (x,y) is to isolate all infectives. That is, for any
x,y = 1 then sy ,(x) > y for all sufficiently small L, so that s, ,(x) — oo as L — 0.

From Theorem 3.3, forx > 1, V; ,(x,1) — C,(x,1) as L — oo which implies that for sufficiently
large L, V; ,(x,1) <L, so that s; ,(x) =0 for all sufficiently large L. [

Fig. 2 shows examples of these properties for three different susceptible population sizes.
3.2. Isolation or total immunisation policies

In this section, we shall state without proof results corresponding to those of Section 3.1 for the
isolation-or-total-immunisation policy. The proofs are given in [15] and are straightforward mod-
ifications of the proofs given for the optimal isolation policy in Section 3.1.

Theorem 3.5. Given x > 0,y > 0, then the optimal cost function Vi 4k ,(x,y) defined by Eq. (8)
satisfies

(1) Vi a,kp(X,p) 1s a non-increasing function of p with V; 4 g ,(x,y) — min{Ly,4 + xK,x} as
p—0and Vi 4k,(x,y) = 0as p— oo;

C 1 T T T T T T T T
0 5 10 15 20 25 30 35 40 45 50
L

Fig. 2. The isolation boundary sz ,(x) against L for p = 5. Upper line represents case when x = 30, middle line for
x =20 and lower line for x = 10.
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(1) Vi 4,k p(x,p) s a non-decreasing function of each of L, 4 and K with V; 4k ,(x,y) — 0 as
min{L,4 + K} — 0, and Vi _4 g ,(x,y) = Cu(x,y) as min{L,4 + K} — oo.

Recall the form of the optimal isolation-or-total-immunisation policy: there exist integers
Sr.akp(x) and Ry 4k ,(x) such that the optimal policy at (x,y) isolates all infectives for
1 <y < 8p 4k,(x), takes no action for S;_4 g ,(x) <y < Ry 4.k ,(x), and immunises all suscepti-
bles for y > Ry 4 k ,(x). Abakuks [10] proved that S;_4 g ,(x) = Ry 4k ,(x) for all large enough x,
and that defining

¢(x) =max{y€Z:Ly<A+xK} forx > 1 9)

then if Sy_4,x,,(X) = Ry 4,x,(x) it follows that Sy 4 x ,(x) = ¢(x) = Ry _4.x,0(x). Note that for any
x = 1, ¢(x) is non-increasing in L and non-decreasing in each of 4, K.
Similarly to Theorem 3.2 for the optimal isolation boundary, we have the following.

Theorem 3.6. Given x = 0,

(1) S1..4,x,(X) 1S non-increasing in p;
(i) Ry 4k p(x) is non-decreasing in p;
(iii) For x < A4/(1 — K) then S; 4x,(x) > max{y € Z:y <x/L} and Ry 4 g ,(x) — o0 as p — 0;
for x = A/(l — K) then SL,A,K,/)(X) — ¢(X) and RL,A,K,/)(X) — ¢(X) as p — 0.
(iv) Sz 4.x,(x) = 0 and Ry 4 g ,(x) — oo as p — oo.

In summary, we have investigated the effect of changes in parameter values on the optimal cost
function and on the optimal action, firstly for an isolation policy and subsequently for an isola-
tion-or-total-immunisation policy. Our results show that if the state (x,y) of the process is known,
then to determine the optimal action it is not necessary to know the precise value of p, but only to
know whether p lies above or below certain threshold values pqo(x,y). However, the relevant
threshold values change as the state (x,y) of the process evolves; furthermore, it will generally
be more realistic to represent our knowledge of p by some uncertainty distribution, rather than
trying to determine with certainty whether p lies above or below certain threshold values. This
is the situation which we consider in the following section.

4. Distributional representation of parameter uncertainty

In this section, we explore the use of an uncertainty distribution to represent our incomplete
knowledge of parameter values. We adopt a Bayesian decision-theoretic approach to determine
the optimal policy (see, for example, [5,6]). In a full Bayesian analysis, we would assign a prior
distribution to each unknown parameter, which is then updated in the light of the observed pro-
gress of the epidemic process to give a posterior distribution at any time z > 0. The expected future
cost of an optimal policy is then computed using this posterior distribution, and taking into ac-
count the fact that the posterior distribution will be further updated in the future. However, this
leads to a rather complicated optimisation problem, due to the need to take into account the fu-
ture updating of the posterior distribution in addition to the transitions of the process (x,y) itself.
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For a rigorous analysis of such problems in the context of discrete time processes, see [16]. To
avoid such an overly involved analysis, we will take the more straightforward approach of assign-
ing an uncertainty distribution to our unknown parameter but not updating this distribution at all
as the epidemic progresses. This seems reasonable in practice as our knowledge of parameter val-
ues at the start of an epidemic may well be based on more than one completed previous epidemics,
in which case the further information provided by the epidemic in progress will be of relatively
little value. Note that although we adopt a Bayesian decision theoretic approach, we do not
explicitly carry out any Bayesian inference.

4.1. Optimal intervention under parameter uncertainty

As before, we consider first the optimal isolation policy, before moving on to the isolation-or-
total-immunisation policy. Suppose our knowledge about the relative removal rate p is represent-
ed by some distribution 7 on 0 < p < co. Denote by V7 (x,y) the expected future cost of adopting
an optimal isolation policy starting from (x,y) and by W7(x, y) the expected future cost of waiting
for a single transition to occur and adopting an optimal policy from then onwards. Note that
V7(x,y)and W7}(x,y) each represent expectations with respect to both the uncertainty distribution
n and the (random) future progress of the infection process, under the optimal (non-random)
intervention policy. Denote by V7 (x, y|p) the expected future cost, starting from (x,y), of adopting
the policy which is optimal under =, conditional upon the true value of the relative removal rate
parameter being p. Then V7 (x,y) = E;[V}(x,y|p)], and noting that the transition probabilities p,.,
gy given by (2) are themselves functions of p then corresponding to (5) and (6) we have

Wilx,y) = Elpo (1 + Vix = 1,y +1p)) + g, Vi(x,y = 1]p)], (10)

Vile,y) =min{L + Vi(x,y = 1), Wi(x, )} (11)
In state (x,y) we intervene by isolating an infective whenever L + V7(x,y — 1) < W7(x,y). It fol-
lows that

Vi ylp) (12)

L+ Vi y —1p) ifL+ Viley = 1) < Wilx,p),

B pxy(l + VZ(X - 17y+ 1|p)) + quVZ(xvy - 1|p) OtherWiSC.

Using Egs. (10)—(12), the optimal policy can be evaluated numerically as follows. Assuming that ©
is a continuous distribution, then for some (sufficiently large) positive integer n, denote by
00:P1,- - -»Pn the quantiles of the distribution 7 such that for i=0,1,...,n, n(p < p;) = (i +0.5)/
(n+1). Fix ypym. = 1. Working through states in the order (1,1),(1,2),...,(1,Vmax)s
(2,1),(2,2),...(2,Ymax — 1),- . ., then when we reach state (x,y) we will already have dealt with the
states (x — 1,y + 1) and (x,y — 1), so that we know the values of Vj(x—1,y+ l|p;) and
Vi(x,y —1]p;) for i=0,1,...,n, together with the optimal action in each of these two states. The
expectation on the right hand side of (10) can now be approximated as

T 1 - T T
Wilx,y) = " pry(pi)(l + Vil =Ly +1p)) + a4, (p)Vilx,y = 1]py).
i=0
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Substituting the above approximation into Eq. (11) allows us to determine the optimal action in
state (x,y), together with the associated cost V7}(x,y). Finally, using Eq. (12) we can compute
Vi(x,y|p;) for i=0,1,...,n. To choose an appropriate value for » in practice, we can take an
increasing set of n values and compute the (approximate) optimal policy by the above method
for each » in turn, stopping when further increases in n do not result in any changes to the com-
puted optimal action within the region of states (x,y) under consideration.

The optimal policy under an uncertainty distribution © unfortunately does not in general have
the simple form elaborated in Section 2 for the case when the true value of p is known. For exam-
ple, Fig. 3(i) shows the optimal isolation policy obtained when we take © to be the Exponential
distribution with mean 100, with L = 0.5. We see that the optimal policy in this case is not a stop-
ping rule. For the computation we took n = 999, so that 1000 quantiles were used to approximate
the Exponential distribution. The computed policy is identical to that found with n = 899, so it at
least seems plausible to suppose that the approximation method has converged to the true solu-
tion. Whatever finite n value we use, we can never be certain that the computed policy is exactly
correct for w the Exponential distribution with mean 100; however, our method is exact (subject to
machine accuracy) if instead we take m to be the discrete uniform distribution on the set of quan-
tiles { po.p1,- - -.Po99} of the Exponential distribution with mean 100. Thus, we have certainly dem-
onstrated the existence of an uncertainty distribution © such that the optimal isolation policy
takes the complicated form shown in Fig. 3(i). We could simplify the problem by looking for
the optimal total isolation policy, in the same way as in Section 2 we considered the optimal total
immunisation policy. That is, in any state (x,y) we choose whether to isolate the whole infective
population, or not to intervene. However, we still find that the set of states (x,y) in which it is
optimal to intervene can be quite complicated, and in particular need not be a connected region
of the (x,y) plane.

(ii)

40 40
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o

w
o

Infectives (y)
N
o
Infectives (y)
N
o

10

10

0 10 20 30 40 0 10 20 30 40
Susceptibles (x) Susceptibles (x)

Fig. 3. Optimal isolation regions, illustrating the effect of replacing the unknown parameter p by the point estimate p.
Black area indicates states (x,y) where it is optimal to isolate an infective; white area indicates states where it is optimal
not to intervene. In each case, the cost of isolating an infective is taken to be L =0.5. (i) Uncertainty about p is
represented by taking w to be the Exponential distribution with mean 100. (ii) p is assumed to take the value p = 100.
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The complicated form of the isolation region, as illustrated in Fig. 3(i), means that, aside from
difficulties of mathematical analysis, the optimal policy under © may not be easy to implement in
practice. In previous work on optimal control of epidemic processes, it is usual to treat parameter
values as known; in reality, this means that a point estimate must be used. Regarding this point
estimate as the true parameter value means that the inherent uncertainty in the estimate is ig-
nored, but does result in a simpler form of optimal policy, and may therefore be preferred. The
obvious choice is to use the point estimate p = E,[p] and compute the optimal policy under the
assumption that p is known to take the value p. For example, corresponding to Fig. 3(i) we have
E.[p] = 100. Fig. 3(ii) shows the optimal isolation policy obtained if we assume that p is known
and takes the value p = p = 100, with L = 0.5. Comparing Fig. 3(ii) with Fig. 3(i) we see that
treating p as known, with value p, does not necessarily produce a very good approximation to
the true optimal policy under n. However, p is not the only possible choice of point estimate
for p. In particular, we will now consider some alternative parameterisations of the general sto-
chastic epidemic model which give rise to alternative natural estimates for p.

4.2. Alternative model parameterisations

So far, we have parameterised our model in terms of the relative removal rate p. Two possible
alternatives often used in the literature are to parameterise in terms of either (i) the basic repro-
duction number R,, defined to be the average number of new infections directly attributable to a
single infective in an otherwise wholly susceptible population; or (ii) the avoidance probability ¢,
defined to be the probability that a single infective fails to infect one specific susceptible individ-
ual. The basic reproduction number Ry is usually used as a threshold parameter for an epidemic
model: for a large population, the epidemic never takes off if Ry < 1 and takes off with non-zero
probability if Ry > 1. Intervention to reduce Ry to below 1 is thus a common epidemic control
strategy (see, for example, [17] or [18]).

The relationships between the parameters p,Ry,q are as follows. Firstly, since the average length
of an infectious period is 1/y and the number of infections per unit time in a wholly susceptible
population of size N is N, then

Ry=BN/y=N/p. (13)

Denoting by I the length of a typical infectious period, so that I ~ Exp(y), the probability that
one particular susceptible escapes infection from a single infective is

_ Y 1
q="FEe" = = - (14)
v+ 1+(1/p)

Note in particular that Egs. (13) and (14) imply that the parameters p,Rq,q are monotonically
related: an increase in p corresponds to a decrease in Ry and to an increase in ¢g. Thus the results of
Section 3 can be immediately re-stated in terms of R or ¢. For instance, given x = 0, y > 0, then
Vr.,(x,p) is non-decreasing in Ry and non-increasing in ¢, and the isolation boundary s, ,(x) is
non-decreasing in R, and non-increasing in q.

Since the parameter R involves population size N, whereas p and ¢ do not, we shall define
R =1/p and consider R rather than R,. Inverting relationship (14) we then have
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1 q
=R T4 (15)
In approximating the optimal policy under © by the optimal policy when p is known to take some
particular value, the relationships (15) lead to the following three natural choices of point estimate
for p.

———: (iii)pp = .
] ’ ( )pR [ER[R]

We will now investigate the effect of using the above point estimates of p upon the computed opti-

mal intervention policy and associated cost function.

4.3. Effect of different parameter estimates on the optimal policy

For the estimates p, p,, pr, it turns out that there is a particularly simple relationship between
the three optimal isolation policies corresponding to these three different estimates for p, as shown
by the following result.

Theorem 4.1. Provided E;[p], Ex[R] < oo then

(i) For any x,y=0, Vi5(x,y) < Vi, (6,3) < Vi (x,0);
(i) For any x = 0, sy 5(x) < 51, (x) < 51,5, (%)

Proof. From (15), we see that p is a convex function of g, so that by Jensen’s inequality p > p,.
Similary from (15) we have R=(1-g¢g)/q, so that R is a convex function of g,
E:[R] = (1 — E;[q])/E:[g] and hence p, > pg. Applying Theorems 3.1 and 3.2, the results follow.
O

Fig. 4 illustrates the effect upon the isolation region of using each of the three estimates p, p,,
pr. Whereas in computing Fig. 3 we used a standard (Exponential) distribution for p, we now
parameterise initially in terms of the avoidance probability ¢, taking ¢ to follow the Beta distri-
bution with parameters (5,0.25) (so that E.[g]=5/5.25=0.952). The induced distribution n of
p is therefore non-standard, but this does not cause any problems in practice. The cost of isolating
an infective is taken to be L = 0.7. Fig. 4(i) shows the isolation region computed under the uncer-
tainty distribution 7, which is seen to have a rather complicated form similar to that seen previ-
ously in Fig. 3(i). As for Fig. 3(i) the optimal policy was computed with n = 999, the computed
policy being identical to that found with n = 899 so that it is plausible to suppose convergence
has been achieved. Figs. 4(ii)—(iv) show the isolation regions computed by treating the point esti-
mates p, p,, pPr, respectively, as though they were the true values of p. These figures illustrate the
relationships between the boundaries s; 7, SLpy»> SLpg expressed in Theorem 4.1 (ii). We also see that
in this case, as in Fig. 3, using p provides a poor approximation to the true isolation region. On
the other hand, using either of p,, pg yields an isolation region which is firstly a good approxima-
tion to the true isolation region, and secondly of simpler form than the true isolation region and
hence more appropriate for practical implementation.
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Fig. 4. Optimal isolation regions, illustrating the effect of replacing the unknown parameter p by each of the point
estimates p, p, or pg. Black area indicates states (x,y) where it is optimal to isolate an infective; white area indicates
states where it is optimal not to intervene. In each case, the cost of isolating an infective is taken to be L =0.7. (i)
Uncertainty about parameter values is represented by taking ¢ to follow the Beta distribution with parameters (5,0.25),
50 Er[g] = 5/5.25 = 0.952. (ii) p is assumed to take the value 5 = 4.46 x 10°. (iii) p is assumed to take the value p, = 20.
(iv) p is assumed to take the value pgr = 16.07.

For the isolation-or-total-immunisation policy we have the following results corresponding to
Theorem 4.1.

Theorem 4.2. Provided E;[p], Ez[R] < 0o then

(i) For any X,y =0, Viax5(6,3) < Viakp, (6:3) < Viagp, (x,3);
(ii) For any x > 0, S, 4x5(x) < SLakp, () <SLakp(X) S Rpakp, < Riakp, < Riakp-

Proof. From the proof of Theorem 4.1 we know that p > p, > pg, and hence the results follow
from Theorems 3.5 and 3.6. [
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Fig. 5 illustrates the effect upon the computed isolation-or-total-immunisation policy of using
each of the three estimates p, p,, pr. In this case, we parameterise initially in terms of R, taking R
to follow the Exponential distribution with mean 0.05. We take cost parameters L = 1.5, 4 =0,
K =10.5. Fig. 5(i) shows the optimal policy computed under the appropriate uncertainty distribu-
tion, where as before we took n = 999 for the computation and this gave identical results to taking
n = 899. Figs. 5(i1)—(iv) show the policies computed by treating the point estimates p, p,, Pz,
respectively, as though they were the true values of p. Once again, whereas using p provides a poor
approximation to the true optimal policy, using either of p,, pr yields a reasonably good
approximation.

It is important to note that Figs. 3-5 are intended to be illustrative of problems which may arise
when uncertainty in parameter values is ignored, and not to represent typical situations. If the le-
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Fig. 5. Optimal isolation-or-total-immunisation policies, illustrating the effect of replacing the unknown parameter p
by each of the point estimates p, p, or pg. Black area indicates states (x,)) where it is optimal to isolate an infective; grey
area indicates states where total immunisation is optimal; white area indicates states where it is optimal not to intervene.
In each case, L =1.5, 4 =0, K =0.5. (i) Uncertainty about parameter values is represented by taking R to follow the
Exponential distribution with mean 0.05. (ii) p is assumed to take the value p = 165.88. (iii) p is assumed to take the
value p, = 20.92. (iv) p is assumed to take the value pr = 20.
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vel of uncertainty is low, so that = is a highly informative (low variance) distribution, then using
any of the estimates p, p,, pg Will result in a good approximation to the true optimal policy. How-
ever, when there is a high level of uncertainty about parameter values we have seen that the choice
of estimate can be important. For the examples shown in Figs. 4 and 5, both p, and pg perform
well, whereas p performs poorly. Of course, p, p,, pr are not the only possible estimates which
could be used, but the results of this section do demonstrate the importance of choice of param-
eter estimate if uncertainty is to be ignored.

5. Discussion

In this paper, we have investigated optimal intervention for a particular stochastic epidemic
model when faced with parameter uncertainty. In Section 3, we established results to the effect
that, as one would expect, a more severe infection calls for a greater level of intervention. In Sec-
tion 4, we looked at the form of the optimal policy when parameter uncertainty is explicitly taken
into account, and at the effect upon the computed policy of treating three different point estimates
as the true parameter value. We saw that choice of parameter estimate can have a substantial ef-
fect upon the computed intervention policy.

A key remaining problem is to elaborate conditions under which use of any specific parameter
estimate leads to good approximation of the true optimal intervention policy. From Theorems 4.1
and 4.2 we know that using the estimate p, results in a policy intermediate between those comput-
ed under p or under pg, so that p, might be favoured as a reasonable compromise. This is to some
extent supported by Figs. 4 and 5, which show the use of p, leading to a good approximation to
the true optimal policy in each case. Further practical (minor) advantages of p, are: (i) that we
need only deal with an uncertainty distribution on the finite closed interval [0,1], whereas para-
meterising in terms of either p or R requires an uncertainty distribution on [0,00); (ii) that we
can reasonably represent a lack of prior information by taking ¢ to be uniformly distributed
on [0,1]; (iii) that a flexible family of distributions on [0,1] are available in the form of the Beta
distributions. However, the real question is whether using p, leads to good approximation of
the true optimal policy in any particular case, and this can as yet only be answered by actually
computing the true optimal policy.

It is important to be aware that our results apply to one specific epidemic model, allowing for
certain rather specific interventions, and assuming a particular simple cost function. Further work
to investigate other models, other forms of intervention, and other cost functions would thus be
very valuable. Various alternative forms of intervention and cost functions are described in the
review papers [1,2]. One way in which we could extend the model would be to allow more general
transition rate functions. Clancy [2] examined optimal isolation and total immunisation policies
for a model with quite general infection and removal rate functions. In particular, a common
modification, suggested by Severo [19], is to replace the constant parameters 3,y by state-depen-
dent functions f,, = ﬁx”’ y“’l,yxy =yy“ for f,y,a,b,c constant. Severo refered to a,b,c as the infec-
tion power, the safety-in-numbers power and the removal power, respectively, and proposed a
maximum likelihood method to estimate the parameters of his model. Another possibility, sug-
gested in the context of AIDS modelling by Ball and O’Neill [20], would be to take f,, = f/

(X+P) Yy =7
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In order to take into account parameter uncertainty, we have adopted a Bayesian decision-the-
oretic approach. Under this approach it is necessary to choose a distribution for the unknown
model parameters. This may be done by referring to previous epidemic data or expert opinion.
A review of parameter estimation procedures for epidemic models is given by Becker [21]. In esti-
mating epidemic model parameters, authors have principally considered perfect information in
the form of full infection and removal time data. Relatively recently, the more realistic situation
where we only have access to imperfect data (usually in the form of removal times or final sizes
only) has been considered. Andersson and Britton [22] investigate the estimation of epidemic
parameters for both completely and partially observed epidemics. O’Neill and Roberts [23] de-
vised a scheme to estimate the parameters of the general stochastic epidemic model when only
removal times (and not infection times) are observed. Within a Bayesian framework, they devel-
oped a Markov chain Monte Carlo algorithm to evaluate the joint posterior distribution of the
infection and removal rate parameters f,y, from which it is straightforward to numerically eval-
uate the posterior distribution of g = y/(y + p).

In order to implement our optimal policies, it is necessary to know the state (X,Y) of the pop-
ulation at every time. As noted above, a more realistic situation is that removal times only are
observed, so that the value of X+ Y is known, but not the values of X and Y separately. The
problem of optimal intervention in this situation of incomplete information is the subject of ongo-
ing work.

A further possible extension to our work would be to allow for updating of our uncertainty dis-
tributions as the epidemic progresses, to take account of the extra information provided by obser-
vation of the infection process. As mentioned above, O’Neill and Roberts [23] show how to
update prior distributions for the parameters f3,y of the general stochastic epidemic model to give
a joint posterior distribution for 5,y at any time during the epidemic. The question of the extent to
which adaptive updating of model parameter distributions affects intervention decisions remains
an area for further study.

In conclusion, it is clear that real-life public health authorities will not have access to true model
parameter values, and thus the hope is that this work may lead to insights of practical value when
making control decisions and aid the implementation of an optimal policy.
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