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Abstract For a susceptible–infectious–susceptible infection model in a heteroge-
neous population, we present simple formulae giving the leading-order asymptotic
(large population) behaviour of the mean persistence time, from an endemic state to
extinction of infection.Ourmodelmaybe interpreted as describing an infection spread-
ing through either (1) a population with heterogeneity in individuals’ susceptibility
and/or infectiousness; or (2) a heterogeneous directed network. Using our asymptotic
formulae, we show that such heterogeneity can only reduce (to leading order) themean
persistence time compared to a corresponding homogeneous population, and that the
greater the degree of heterogeneity, the more quickly infection will die out.

Keywords Stochastic epidemic models · Large deviations · Endemic fade-out ·
Directed configuration model · Superspreaders

Mathematics Subject Classification 92D30 · 60J28

1 Introduction

In modelling endemic infections, a quantity of particular interest is the persistence
time until infection dies out from the population. For discrete state-space Markov
chain models, the expected persistence time for an infection that has become endemic
in the population (i.e. starting from quasi-stationarity) may be found as an eigenvalue
of the transition rate matrix (van Doorn and Pollett 1993). However, for large popula-
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tions and for more complicated models, numerical computation of this exact solution
can be very time-consuming, and may also suffer from numerical instability. More-
over, it is not straightforward to use this eigenvalue characterization to investigate, for
instance, the effect of population heterogeneities upon the expected persistence time.
Approximation methods are therefore required. For a number of infection models it
has been shown (Andersson and Djehiche 1998; Ball et al. 2016; van Herwaarden and
Grasman 1995) that, denoting by N the typical size of the population, the expected time
from endemicity to extinction, τ , is asymptotically given by an expression of the form

τ ∼ C√
N

exp(AN ) (1)

where the values of A,C depend upon parameters of the model, but not upon N . It is
assumed here that the process is super-critical, so that long-term endemicity is possible.

For the classic susceptible–infectious–susceptible (SIS) model of Weiss and Dis-
hon (1971), Andersson and Djehiche (1998) found simple explicit expressions for
both A and C in terms of the basic reproduction number R0 (the expected num-
ber of secondary cases caused by a typical primary case in an otherwise susceptible
population), under the assumption of super-criticality (that is, R0 > 1); specifically,
A = (1/R0)−1+ln R0 andC = R0

√
2π/(R0−1)2, assuming time is scaled such that

individual infectious periods are of mean 1. This was extended by Ball et al. (2016)
to allow for a general infectious period distribution in place of the exponential distri-
bution assumed by Andersson and Djehiche (1998); they showed that leading-order
behaviour is unchanged, so that A = (1/R0) − 1 + ln R0 as before, while the value
of C depends upon the infectious period distribution, and may be straightforwardly
evaluated provided this distribution is known. Pre-dating the above work, van Her-
waarden and Grasman (1995) showed that relationship (1) holds true for a particular
susceptible–infectious–removed (SIR) infection model. In this case, however, evalua-
tion of the constant A requires numerical solution of a system of ordinary differential
equations, while no method for evaluating C is given.

The system of ordinary differential equations used in vanHerwaarden andGrasman
(1995) to evaluate A may be regarded as the equations of motion corresponding to a
particularHamiltonian system.More recently, a number of authors (Assaf andMeerson
2010, 2017; Dykman et al. 1994; Elgart and Kamenev 2004; Kamenev and Meerson
2008; Lindley et al. 2014) have applied this Hamiltonian approach to a range of
infection models to derive results of the form

lim
N→∞

ln τ

N
= A. (2)

Equation (2) is not as precise as relationship (1), but does at least give the leading-
order behaviour of τ in the large population (N → ∞) limit. Evaluation of A generally
requires numerical solution of the equations of motion, and consequently much of the
research effort has focused upon developing efficient numerical procedures.

We shall apply the Hamiltonian approach to approximate the expected persistence
time from endemicity, τ , for an SIS model incorporating heterogeneity in individual
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Persistence time of SIS infections in heterogeneous…

infectivities and susceptibilities. Such heterogeneity is a common feature of real-
world infections. For instance, for a number of infections (eg SARS) it has been
hypothesised that there exists a subgroup of ‘super-spreaders’ within the population,
being individuals of higher infectivity than the rest.Heterogeneous susceptibilitiesmay
arise, for instance, through individuals having differing histories of prior exposure to
infection or vaccination. Alternatively, our model may be interpreted as a model for
infection spreading on an uncorrelated (that is, with no correlations between degrees
of neighbouring individuals) directed network (Dorogovtsev et al. 2008).

In contrast to almost all previous work, we are able to find an explicit formula for
the constant A in Eq. (2), at least provided the heterogeneity is in either infectivity,
or susceptibility, but not both. As well as being much quicker and easier to evaluate
than the solution to a (typically high-dimensional) system of ordinary differential
equations, a further advantage of such an explicit formula is that it may be used to
establish qualitative results about the effects of model assumptions. Specifically, we
investigate the effect of increasing heterogeneity upon the persistence time of infection
in the population.

The remainder of the paper is structured as follows. In Sect. 2, we define precisely
our heterogeneous population SIS model, and describe how it may be interpreted as
approximating a directed network model. In Sect. 3 we recall some general theory
that will be required in the sequel. Our main result, Theorem 1, is derived in Sect. 4,
establishing explicit asymptotic formulae for ln τ in the large-population limit, pro-
vided that heterogeneity is in either infectivity or susceptibility, but not both. Using
these explicit formulae, we go on in Sect. 5 to demonstrate that the greater the level
of heterogeneity in either infectivity or susceptibility, the more rapidly extinction of
infection will occur (on average, to leading order in a large population). In the case that
both heterogeneities are present simultaneously, we present an approximate formula
for limN→∞(ln τ)/N , valid provided R0 is only slightly greater than 1, together with
numerical work (Fig. 2) indicating that mean persistence time is again maximised in
the homogeneous-population case. In Sect. 6 we demonstrate that if heterogeneity is
in susceptibilities, our asymptotic formula for ln τ , and hence also our conclusion that
greater heterogeneity reduces mean persistence time, remain valid for more general
infectious period distributions than the classic exponential distribution. We present
numerical evidence (Fig. 3) suggesting that this is also true when instead heterogene-
ity is in infectivities. Finally, in Sect. 7, we discuss the directed network interpretation
of our results (Theorem 4) and suggest some directions for further work.

2 The SIS infection model in a heterogeneous population or directed
network

We first formulate our model in terms of a population divided into a fixed number of
groups, and then describe how the same model may be interpreted as modelling an
infection spreading on a directed network.

Consider a closed population of N individuals divided into k groups, with group i
(i = 1, 2, . . . , k) consisting of Ni individuals. Denote by fi = Ni/N the proportion
of the population belonging to group i , so that

∑
i fi = 1. When a group i individ-
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Table 1 Transition rates for the k-group SIS model

Event State transition Transition rate

Infection in group j I j → I j + 1 β
N

(∑k
m=1 λm Im

)
μ j (N j − I j )

Recovery in group j I j → I j − 1 γ I j

ual becomes infected, it remains so for a time distributed as an exponential random
variable with mean 1/γ (assumed for simplicity to be the same for each group). Dur-
ing this infectious period, the group i infective makes contacts with each individual
in each group j = 1, 2, . . . , k at the points of a Poisson process of rate βλiμ j/N ,
where β is some overall measure of infectiousness, λi represents the infectivity of
group i individuals, and μ j represents the susceptibility of group j individuals. (The
assumption that the group i to group j infection rate factorises in this way is some-
times referred to as ‘separable mixing’.) Without loss of generality, we scale the λi ,
μ j values so that

∑
i λi fi = ∑

j μ j f j = 1. These Poisson processes and infectious
periods are all mutually independent. If a contacted individual is susceptible, then
it becomes infected (and infectious); if the contacted individual is already infected
then the contact has no effect. Denoting by I j (t) the number of infected individuals
in group j at time t , then the process {I(t) = (I1(t), I2(t), . . . , Ik(t)) : t ≥ 0} is a
continuous-time Markov chain with transition rates given in Table 1, and the number
of susceptible individuals in group j at time t ≥ 0 is S j (t) = N j − I j (t). We will
assume throughout that β, γ > 0, and that fi , λi , μi > 0 for all i . Note that our model
is a special case of the model of Clancy and Pearce (2013), although we use slightly
different notation here. The basic reproduction number R0 is given by the dominant
eigenvalue of the matrix M with entries mi j = βλiμ j f j , so that

R0 = β

γ

k∑

i=1

λiμi fi .

We now describe how the above model may be interpreted as describing infection
spreading through a network. Each of the N individuals in the population is assigned
an in-degree din and out-degree dout according to some joint probability mass function
p (din, dout) on Z2+. These degrees are assigned independently to distinct individuals,
but the in and out degree need not be independent for a single individual. To each
individual we attach ‘stubs’, or half-edges, with din stubs pointing inwards and dout
stubs pointing outwards. Inward-pointing stubs are then paired with outward-pointing
stubs throughout the population, to create links between individuals. In order that this
process can produce a valid network, with no left over half-edges, we clearly require
that E [din] = E [dout]. We do not concern ourselves with the precise mechanism by
which stubs are paired off [see Britton et al. (2007) and Chen and Olvera-Cravioto
(2013) for relevant discussion]; rather, we shall simply assume that the resulting net-
work is uncorrelated, so that the so-called ‘annealed’ network approximation is valid
for an ensemble of such networks. This is a mean-field approximation for heteroge-
neous networks, and may be described as follows (see Dorogovtsev et al. 2008 for
more comprehensive discussion).
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Denote by κ the rate at which infection transmits along each link from an infectious
individual to a susceptible individual. Suppose for simplicity that there are a finite
number k of (din, dout)pairs havingnon-zeroprobability, anddefine abijective function
c (din, dout) : Z2+ → {1, 2, . . . , k} that assigns a unique number to each of the possible
(din, dout) pairs. We say an individual is of ‘group j’ if they have degrees (din, dout) =
c−1( j), and define din( j), dout( j) to be the in and out degrees, respectively, of a group j
individual. For j = 1, 2, . . . , k, denote by N j the total number of group j individuals
in the population, and by I j (t) the number of group j individuals who are infectious
at time t . Then under the annealed network approximation, the total rate at which
group j individuals become infected is given by

κ

NE [din]

(
k∑

m=1

dout(m)Im

)

din( j)
(
N j − I j

)
.

When individuals become infected, they remain so for an exponentially distributed
time of mean 1/γ before returning to the susceptible state.

This network model may be approximated by the k-group model with transition
rates given in Table 1 by taking

β = κE [dout] ,

f j = p
(
c−1( j)

)
,

μ j = din( j)/E [din] ,

λ j = dout( j)/E [dout] ,

for j = 1, 2, . . . , k.
The undirected version of the above annealed network approximation (with λ = μ)

has been studied byHindes and Schwartz (2016), via numerical solution of Hamilton’s
equations of motion, Eqs. (15,16) below. We note that real-world social networks are
often only partially directed, containing both directed and undirected edges (that is to
say, bi-directional edges are over-represented compared to what would be expected by
chance), see Spricer and Britton (2015). Each individual then has three-dimensional
degree (din, dout, dun), where dun is the number of undirected edges connected to
the individual in question. The above annealed network approximation will remain
valid if we replace (din, dout) with (din + dun, dout + dun), provided, as before, that
the resulting network is uncorrelated.

In the next section we present some relevant general theory, before going on in
Sect. 4 to apply these general methods to the model described above.

3 General theory regarding persistence time from endemicity

Consider an infection modelled by a continuous-time Markov process {X(t) : t ≥ 0}
on finite state-space S ⊂ Z

k with transition ratematrix Q. Suppose that S ismade up of
an absorbing set of states A (corresponding to absence of disease) and a single transient
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communicating class C . We denote by QC the transition rate matrix restricted to C .
Then the infection will almost surely die out (i.e. the process will leaveC) within finite
time, and (Darroch and Seneta 1967) there exists a unique quasi-stationary distribution
q = {qx : x ∈ C} such that, for any initial state within C ,

qx = lim
t→∞Pr (X(t) = x |X(t) ∈ C ) for x ∈ C.

That is, provided the infection does not die out, it will settle to the endemic distribu-
tion q. The distribution q may be found as the unique solution of

qQC = −(1/τ)q with
∑

x∈C
qx = 1, (3)

where −(1/τ) is the eigenvalue of QC with largest real part. The time to extinction
from quasi-stationarity is exponentially distributed with mean τ .

Although τ may be computed exactly from Eq. (3), this can become impracti-
cal when the state-space is large, and it is not straightforward from (3) to establish
qualitative results. Approximation methods are therefore valuable, and in particular,
methods from Hamiltonian statistical mechanics may be used to study the leading
order asymptotic (large population) behaviour of τ , as follows.

Suppose that X(t) is a density-dependent process in the sense of chapter 11 of Ethier
and Kurtz (2005); that is, the transition rates are of the form

P (X(t + δt) = x + l | X(t) = x) = NWl

( x
N

)
+ o(δt) for x ∈ S, l ∈ L , (4)

for some functions Wl : Rk → R
+, where L is the set of possible jumps from each

state x ∈ S and N is some parameter indicating overall size of the system (in our
applications, N will be the size of the population). Under mild technical conditions
(Ethier andKurtz 2005, Theorem11.2.1), the scaled process X(t)/N converges almost
surely over finite time intervals, as N → ∞, to the solution y(t) of the ordinary
differential equation system

d y
dt

=
∑

l∈L
lWl ( y). (5)

For our application, we suppose that the system (5) possesses two equilibrium
points: a stable endemic equilibrium point y∗ with all components strictly positive,
and an unstable disease-free equilibrium point at y = 0. We next summarise some key
results from the Hamiltonian approach, in a form suited to our application. Detailed
justifications and extensions of the method may be found in the review paper (Assaf
and Meerson 2017) and references therein.

The Hamiltonian of the system is defined to be

H( y, θ) =
∑

l∈L
Wl ( y)

(
eθT l − 1

)
. (6)
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This Hamiltonian determines the following two complementary Hamilton–Jacobi par-
tial differential equations:

H

(

y,
∂V

∂ y

)

= 0 and H

(
∂U

∂θ
, θ

)

= 0. (7)

Each of these Hamilton–Jacobi equations is a way of expressing the eigenvector equa-
tion (3) while retaining only leading order terms in the limit N → ∞ (see “Appendix”
for a brief outline of the derivations).

If we can solve either of the Hamilton–Jacobi equations (7), the leading-order
asymptotic behaviour of the mean time to extinction τ is given by

lim
N→∞

ln τ

N
= V (0) − V ( y∗) = U (0) −U (θ∗), (8)

where y∗ is the endemic equilibrium point of the deterministic system (5), and θ∗ is
the (assumed unique) non-zero equilibrium point of the complementary system

dθ

dt
= − ∂H

∂ y

∣
∣
∣
∣
y=0

. (9)

Note that system (5) may be recovered as d y
dt = ∂H

∂θ

∣
∣
θ=0.

The solutions U (θ), V ( y) to equations (7) are related via the Legendre transform;
that is,

U (θ) = sup
y

{
yT θ − V ( y)

}
, V ( y) = sup

θ

{
θT y −U (θ)

}
,

see Masoero (2014).
When (as is usually the case) it is not possible to find an analytical solution to

either of the Hamilton–Jacobi equations (7), they may be solved numerically using
the method of characteristics. That is, we write down the following 2k-dimensional
system of ordinary differential equations:

d y
dt

= ∂H

∂θ
=

∑

l∈L
lWl ( y)e

θT l ,

dθ

dt
= − ∂H

∂ y
= −

∑

l∈L

∂Wl

∂ y

(
eθT l − 1

)
,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(10)

referred to as the ‘equations of motion’ of the system, and apply an appropriate numer-
ical solver to (10). We then have limN→∞(ln τ)/N = A, where A is the ‘action’
integral,

A =
∫ ∞

−∞
θT

d y
dt

dt = −
∫ ∞

−∞
yT

dθ

dt
dt, (11)
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the integral in each case being evaluated along a trajectory from ( y∗, 0) to (0, θ∗).
Note that A = V (0) − V ( y∗) = U (0) −U (θ∗).

Having set out the general Hamiltonian approach, we will now apply this technique
to the infection model described in Sect. 2 above.

4 Asymptotic persistence time formulae

Recall the infection model {I(t) : t ≥ 0} described in Sect. 2, with transition rates
given in Table 1. In the large population limit, the scaled infection process I(t)/N
converges almost surely, over finite time intervals, to the deterministic process y(t)
satisfying the system of ordinary differential equations (5); that is,

dyi
dt

= β

⎛

⎝
k∑

j=1

λ j y j

⎞

⎠ μi ( fi − yi ) − γ yi for i = 1, 2, . . . , k. (12)

For R0 > 1 there is a unique non-zero equilibrium point y∗ of the system (12),
and it is globally asymptotically stable (Lajmanovich and Yorke 1976). This endemic
equilibrium point y∗ is given by (Nold 1980)

y∗
i = μi fi D(λ,μ)

1 + μi D(λ,μ)
for i = 1, 2, . . . , k, (13)

where D(λ,μ) is the unique positive solution of

β

γ

k∑

j=1

μ j f jλ j

1 + μ j D(λ,μ)
= 1. (14)

The Hamiltonian (6) corresponding to the process I(t) is

H( y, θ) = β

⎛

⎝
k∑

j=1

λ j y j

⎞

⎠

(
k∑

i=1

μi ( fi − yi )
(
eθi − 1

)
)

+ γ

k∑

i=1

yi
(
e−θi − 1

)
.

The corresponding equations of motion (10) are, for i = 1, 2, . . . , k,

dyi
dt

= β

⎛

⎝
k∑

j=1

λ j y j

⎞

⎠ μi ( fi − yi )e
θi − γ yie

−θi , (15)

dθi

dt
= −βλi

k∑

j=1

μ j ( f j − y j )
(
eθ j − 1

) + β

⎛

⎝
k∑

j=1

λ j y j

⎞

⎠ μi
(
eθi − 1

)

− γ
(
e−θi − 1

)
. (16)
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The non-zero equilibrium point θ∗ given by (9) satisfies

βλi

k∑

j=1

μ j f j
(
eθ∗

j − 1
)

+ γ
(
e−θ∗

i − 1
)

= 0 for i = 1, 2, . . . , k. (17)

Setting B = (β/γ )
∑

j f jμ j

(
1 − eθ∗

j

)
, then (17) implies that

e−θ∗
i = 1 + λi B for i = 1, 2, . . . , k.

Substituting back into Eq. (17), we find that either B = 0 (corresponding to θ = 0)
or B = D(μ,λ). The elements of θ∗ are thus

θ∗
i = − ln (1 + λi D(μ,λ)) for i = 1, 2, . . . , k.

So far, we have allowed for heterogeneities in both infectivity and susceptibility
simultaneously. If we restrict to only one type of heterogeneity, then it becomes pos-
sible to find an explicit formula for the action A. Our main result is the following.

Theorem 1 Consider the heterogeneous SIS infection model defined in Sect. 2, with
transition rates given in Table 1, and suppose R0 > 1. Recall that τ denotes the mean
time from quasi-stationarity to disease extinction, and that D(λ,μ) is defined to be
the unique positive solution of Eq. (14).

(i) If heterogeneity is in infectivity alone (μ = 1), then

lim
N→∞

ln τ

N
=

k∑

i=1

fi ln (1 + λi D(1,λ)) − γ

β
D(1,λ). (18)

(ii) If heterogeneity is in susceptibility alone (λ = 1), then

lim
N→∞

ln τ

N
=

k∑

i=1

fi ln (1 + μi D(1,μ)) − γ

β
D(1,μ).

(Note: under the network interpretation, the assumption μ = 1 corresponds to every
individual having the same in-degree, whereas λ = 1 corresponds to every individual
having the same out-degree.)

Proof (i) Suppose that μi = 1 for all i , and consider a trajectory {θ(z) : 0 ≤ z ≤
D(1,λ)} along which θi = − ln (1 + λi z) for i = 1, 2, . . . , k. Along such a
trajectory, the Hamiltonian simplifies to

H( y, θ) = β

⎛

⎝
k∑

j=1

λ j y j

⎞

⎠

(
k∑

i=1

( fi − yi )

(
1

1 + λi z
− 1

))

+ γ

k∑

i=1

yiλi z
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= γ z

⎛

⎝
k∑

j=1

λ j y j

⎞

⎠

(

1 − β

γ

k∑

i=1

fiλi
1 + λi z

+ β

γ

k∑

i=1

yiλi
1 + λi z

)

.

Since z > 0 and
∑

j λ j y j > 0 (except at endpoints of the trajectory) theHamilton–

Jacobi equation H
(

∂U
∂θ

, θ
) = 0 reduces to

1 − β

γ

k∑

i=1

fiλi
1 + λi z

+ β

γ

k∑

i=1

λi

1 + λi z

∂U

∂θi
= 0. (19)

Now along the trajectory under consideration, we have

dU

dz
= −

k∑

i=1

λi

1 + λi z

∂U

∂θi

and so Eq. (19) becomes

dU

dz
= γ

β
−

k∑

i=1

fiλi
1 + λi z

⇒ U (θ(z)) −U (θ(0)) =
(

γ

β

)

z −
k∑

i=1

∫ z

0

fiλi
1 + λi x

dx

⇒ U (θ) −U (0) =
(

γ

β

)

z −
k∑

i=1

fi ln (1 + λi z)

along θi = − ln(1 + λi z).

The action is therefore given by

A = U (0) −U (θ∗) =
k∑

i=1

fi ln (1 + λi D(1,λ)) − γ

β
D(1,λ),

as required.
(ii) For the SIS model on a finite network, in which each individual u makes contact

with each other individual v at rate βuv , it is known that, provided infectious peri-
ods are exponentially distributed, the decay parameter of the process is unchanged
under transposition of the matrix of infection rates {βuv}. This follows from the
property of ‘network duality’, see Wilkinson and Sharkey (2013), Holley and
Liggett (1975) and Harris (1976). In our context, this implies that the mean time
to extinction from quasi-stationarity, τ , is identical if we interchange the roles of
λ,μ. Hence part (ii) of the theorem follows immediately from part (i).
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We can confirm this as follows. With λ = 1, the Hamiltonian may be written as

H( y, θ) = γ

k∑

i=1

(
eθi − 1

)
⎛

⎝β

γ

⎛

⎝
k∑

j=1

y j

⎞

⎠ μi ( fi − yi ) − yie
−θi

⎞

⎠ .

With the convention that y ln y = 0 when y = 0, take

V ( y) =
k∑

i=1

yi

(

1 + ln yi − ln

(
β

γ
μi

))

−
(

k∑

i=1

yi

)

ln

(
k∑

i=1

yi

)

+
k∑

i=1

( fi − yi ) ln( fi − yi ). (20)

Then

∂V

∂yi
= ln

⎛

⎝ yi
β
γ
μi ( fi − yi )

(∑
j y j

)

⎞

⎠ for i = 1, 2, . . . , k,

and so

H

(

y,
∂V

∂ y

)

= 0.

That is, V ( y) satisfies the relevant Hamilton–Jacobi equation. The action is then
given by

A = V (0) − V ( y∗) =
k∑

i=1

fi ln (1 + μi D(1,μ)) − γ

β
D(1,μ).

As expected, we recover the formula for the case of heterogeneous infectivity,
but with the roles of λ,μ interchanged.
Having found the solution V ( y) for the case λ = 1, we can find the corresponding
function U (θ) as the Legendre transform of V ( y). For i = 1, 2, . . . , k, we have

d

dyi

(
yT θ − V ( y)

)
= θi − ln

⎛

⎝ yi
β
γ
μi ( fi − yi )

(∑
j y j

)

⎞

⎠ ,

and so any stationary point satisfies

yi =
β
γ
μi fi

(∑
j y j

)
eθi

1 + β
γ
μi

(∑
j y j

)
eθi

. (21)
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For θ ∈ R
k , define the function Q(μ, θ) to be the solution of

β

γ

k∑

j=1

μ j f j
e−θ j + μ j Q(μ, θ)

= 1.

Setting R = (β/γ )
∑

j y j and substituting from (21) into the definition of R, we

find that R = Q(μ, θ), and hence the function yT θ −V ( y) has a stationary point
at

yi = μi fieθi Q(μ, θ)

1 + μieθi Q(μ, θ)
. (22)

Evaluating the function yT θ − V ( y) at the point (22), we find

U (θ) =
k∑

i=1

fi ln
(
1 + μie

θi Q(μ, θ)
) − γ

β
Q(μ, θ) (23)

and can easily verify that the function (23) does indeed satisfy H
(

∂U
∂θ

, θ
) = 0.

Now Q(μ, 0) = D(1,μ) and Q(μ, θ∗) = 0, so we once again find that

A = U (0) −U (θ∗) =
k∑

i=1

fi ln (1 + μi D(1,μ)) − γ

β
D(1,μ).

�

Although we did not actually need to find the functions U (θ), V ( y) in order to

prove Theorem 1(ii), we include them because knowledge of these functions can be
of assistance in generalising and extending our results. We will demonstrate this in
Theorem 3 below.

Figure 1 illustrates Theorem 1 in the case of k = 2 groups with heterogeneity in
infectivity (the graph for the corresponding case with heterogeneity in susceptibility is
identical, by network duality). The exact value of (ln τ)/N is computed from Eq. (3)
for total population sizes N = 100, 150, . . . , 650. The action A is computed from
Eq. (18). For comparison, we also show the action A0 = (1/R0)−1+ ln R0 computed
for the homogeneous population SIS model with the same value for R0. We see that
formula (18) gives a good approximation to (ln τ)/N for population sizes from around
N = 300 upwards. We can also see that if we were to ignore heterogeneity and use
the homogeneous population result, wewould drastically over-estimate the persistence
time of infection.We demonstrate this point in Theorem 2 below, as well as comparing
heterogeneous populations of greater or lesser degrees of heterogeneity.
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Fig. 1 Values of (ln τ)/N and asymptotic formulae plotted against population size N . Fixed parameter
values k = 2, f = (0.5, 0.5), λ = 2

51 (50, 1), μ = (1, 1), R0 = 1.5, γ = 1. For these parameter
values, D(λ,μ) = 0.5, y∗ = (1/6, 1/6), D(μ,λ) = 0.2625, θ∗ = (−0.4152 − 0.0102), with action A ≈
0.0377 and corresponding action for the homogeneous case A0 ≈ 0.0721. The dots, labelled ‘eigenvalue
computation’, are the true values of (ln τ)/N computed fromEq. (3); the action A is computed fromEq. (18);
the homogeneous action is computed as A0 = (1/R0) − 1 + ln R0

5 The effect of increasing heterogeneity

Using the formulae of the previous section, we are now in a position to investigate
the effect of increasing heterogeneity upon the persistence time of infection. First, in
order to compare different levels of heterogeneity, we recall the definition of majoriza-
tion (Marshall et al. 2011). For any x ∈ (R+)k , denote by x[1] ≥ x[2] ≥ · · · ≥ x([k] the
ordered components of x. Then for x(1), x(2) ∈ (R+)k , we say x(1) is majorized by
x(2), denoted x(1) ≺ x(2), if

∑k
i=1 x

(1)
i = ∑k

i=1 x
(2)
i and

∑ j
i=1 x

(1)
[i] ≤ ∑ j

i=1 x
(2)
[i] for

j = 1, 2, . . . , k−1. An equivalent definition is that
∑k

i=1 φ
(
x (1)
i

)
≤ ∑k

i=1 φ
(
x (2)
i

)

for all convex functions φ(·). Intuitively, x(2) is ‘more heterogeneous’ than x(1). More
generally, given a probability vector (with components summing to 1) p ∈ (R+)k ,
then x(1) is p-majorized by x(2), written x(1) ≺ p x(2), if there exists a permuta-

tion σ such that x (1)
σ (1) ≥ x (1)

σ (2) ≥ · · · ≥ x (1)
σ (k) and x (2)

σ (1) ≥ x (2)
σ (2) ≥ · · · ≥ x (2)

σ (k)

with
∑k

i=1 pi x
(1)
i = ∑k

i=1 pi x
(2)
i and

∑ j
i=1 pσ(i)x

(1)
σ (i) ≤ ∑ j

i=1 pσ(i)x
(2)
σ (i) for

j = 1, 2, . . . , k − 1.

Theorem 2 Consider two populations, with β(1) = β(2) = β, γ (1) = γ (2) = γ , and
each having the same group structure f (1) = f (2) = f , where we use superscripts
(1), (2) to denote the population under consideration. Recall that τ denotes the mean
time from quasi-stationarity to disease extinction.
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(i) With heterogeneity in infectivity alone,

λ(1) ≺ f λ(2) ⇒ lim
N→∞

ln τ (1)

N
≥ lim

N→∞
ln τ (2)

N
.

(ii) With heterogeneity in susceptibility alone,

μ(1) ≺ f μ(2) ⇒ lim
N→∞

ln τ (1)

N
≥ lim

N→∞
ln τ (2)

N
.

In particular, provided heterogeneity is in either infectivity or susceptibility but not
both, then limN → ∞ (ln τ) /N is maximised in the homogeneous case.

Proof Consider the case of heterogeneity in infectivity, and suppose that λ(1) ≺ f λ(2).
The function h(x) = x/

(
1 + xD

(
1,λ(1)

))
is concave for x > 0, and so applying

proposition 14.A.3 of Marshall et al. (2011),

k∑

i=1

fiλ
(2)
i

1 + λ
(2)
i D(1,λ(1))

≤
k∑

i=1

fiλ
(1)
i

1 + λ
(1)
i D(1,λ(1))

= γ

β
,

the final equality coming from the definition (14) of D(μ,λ) for population 1. The

expression
∑

i fiλ
(2)
i /

(
1 + λ

(2)
i z

)
is a decreasing function of z, and so from Eq. (14)

for population 2 it follows that D
(
1,λ(1)

) ≥ D
(
1,λ(2)

)
.

Now define the function ψ(z) = ∑
i fi ln

(
1 + λ

(1)
i z

)
− (γ z/β). Then

dψ

dz
=

∑

i

fiλ
(1)
i

1 + λ
(1)
i z

− γ

β
,

so that ψ ′(z) > 0 for 0 < z < D
(
1,λ(1)

)
, and hence ψ

(
D

(
1,λ(2)

)) ≤
ψ

(
D

(
1,λ(1)

)) = A(1). That is,

k∑

i=1

fi ln
(
1 + λ

(1)
i D

(
1,λ(2)

))
− γ D

(
1,λ(2)

)

β
≤ A(1). (24)

The function g(x) = ln
(
1 + D

(
1,λ(2)

)
x
)
is concave for x > 0, and so again

applying proposition 14.A.3 of Marshall et al. (2011),

k∑

i=1

fi ln
(
1 + λ

(2)
i D

(
1,λ(2)

))
≤

k∑

i=1

fi ln
(
1 + λ

(1)
i D

(
1,λ(2)

))
.

Combining with (24) yields

A(2) ≤ A(1),
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Fig. 2 Contour plot showing the action A (solid contours) as a function of λ1, μ1. Fixed parameter values
k = 2, f = (0.5, 0.5), R0 = 1.2. The action is maximised at (λ1, μ1) = (1, 1), with value A0 =
(1/R0) − 1 + ln R0 ≈ 0.0157. Dashed contours show the approximation Ã computed from formula (25).
Dotted contours show a finite-population approximation—see main text for details

and the result follows.
Part (ii) of the theorem follows immediately by interchanging the roles of λ,μ. �


Figure 2 illustrates Theorem 2, as well as showing the effect of allowing hetero-
geneity in both infectivity and susceptibility simultaneously, for the case of k = 2
equal-sized groups ( f1 = f2 = 0.5). The constraints on the elements of λ,μ in this
case reduce to λ1 + λ2 = μ1 + μ2 = 2, and so we plot the action as a function of
(λ1, μ1) ∈ (0, 2)2. We choose to keep R0 fixed, with the value of β being varied in
order to achieve this. With both heterogeneities present, we have no explicit formula
for the action A, and instead compute it by first solving the equations ofmotion (15,16)
numerically using the Matlab bvp4c command, and then integrating the numerical
solution along the trajectory, Eq. (11). The solid contours in Fig. 2 show the action val-
ues A computed in this way. Note that the transformation (λ1, μ1) → (2−λ1, 2−μ1)

here amounts to simply re-labelling the groups, so that Fig. 2 is invariant under a rota-
tion of half a turn around the point (1, 1); also, we know from network duality that
the action is unchanged under the transformation (λ1, μ1) → (μ1, λ1), so that Fig. 2
is invariant under reflection in the line λ1 = μ1.

Althoughwe do not have an explicit formula for Awhen both types of heterogeneity
are present, we can obtain an approximate formula valid for R0 close to (and above) 1,
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as follows. For R0 only slightly larger than 1, the trajectory from ( y∗, 0) to
(
0, θ∗)

satisfying equations (15,16) may be approximated by a straight line. The integral (11)
can easily be evaluated along the straight line connecting ( y∗, 0) to

(
0, θ∗), and we

thus find that A ≈ Ã, where

Ã = D(λ,μ)

2

k∑

i=1

μi fi ln (1 + λi D(μ,λ))

1 + μi D(λ,μ)
. (25)

Values of Ã are shown as dashed contours in Fig. 2, and we see that for these parameter
values Ã does indeed provide a reasonable approximation to the true value A. Note
that although the action A is known (from network duality) to be invariant under the
interchange of λ,μ, the approximating formula (25) does not possess this symmetry.
Nevertheless, we see that in Fig. 2 the contours corresponding to Ã do appear sym-
metrical under reflection in the line λ1 = μ1, so that the expected symmetry does at
least hold approximately here.

For comparison, the dotted contours in Fig. 2 were computed by solving the eigen-
value equation (3) numerically for N = 400 and N = 500, and assuming (without
proof) that asymptotic formula (1) is valid for our model. Denoting by τN the mean
time from quasi-stationarity to disease extinction in a population of size N , formula (1)
implies that the action A may be approximated by

(
ln

(
τ500

√
500

)
− ln

(
τ400

√
400

))/
100, (26)

and the dotted contours show computed values of formula (26). The fact that the dotted
contours closely follow the solid contours provides some confirmation both that the
action A gives a good approximation to (ln τ)/N for population sizes above N = 400,
and that formula (1) does indeed apply to our model.

We see from Fig. 2 that the action decreases as we move away from the point
(λ1, μ1) = (1, 1), not only along the lines λ1 = 1 and μ1 = 1, as ensured by
Theorem 2, but in any direction. That is, heterogeneity in infectivity, or susceptibility,
or any combination of the two, reduces the value of limN→∞(ln τ)/N compared to
the homogeneous case. We discuss this further in Sect. 7 below.

6 Generalising the infectious period distribution

So far, we have made the conventional assumption that individuals’ infectious periods
are exponentially distributed. This is purely a mathematical convenience, not moti-
vated by biological realism. Realism can be greatly improved by allowing infectious
periods to follow an Erlang distribution, using the ‘method of stages’. That is, when
an individual becomes infected, it passes through s infectious stages, remaining in
each stage for an exponentially distributed time of mean (sγ )−1, before returning
to susceptibility. As before, we denote by N j the (constant) number of individuals
in group j , and by N = N1 + N2 + · · · + Nk the total population size. Denot-
ing by I jv(t) the number of group j individuals in infectious stage v at time t , then
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Table 2 Transition rates for the k-group, s-stage SIS model

Event State transition Transition rate

Infection in group j I j1 → I j1 + 1 β
N

(∑k
m=1 λm

∑s
v=1 Imv

)
μ j

(
N j − ∑s

v=1 I jv
)

Transition to next
infectious stage

(
I j,v−1, I jv

)

→ (I j,v−1 − 1, I jv + 1)
sγ I j,v−1 for v = 2, 3, . . . , s

Recovery in group j I js → I js − 1 sγ I js

{
I jv(t) : j = 1, 2, . . . , k, v = 1, 2, . . . , s, t ≥ 0

}
is a continuous-timeMarkov chain

with transition rates given in Table 2. The number of susceptible individuals in group j
is S j (t) = N j − ∑s

v=1 I jv(t).
Writing y = {yiv : i = 1, 2, . . . , k, v = 1, 2, . . . , s} and θ = {θiv : i =

1, 2, . . . , k, v = 1, 2, . . . , s}, the corresponding Hamiltonian is

H( y, θ) = β

⎛

⎝
k∑

j=1

λ j

s∑

v=1

y jv

⎞

⎠

(
k∑

i=1

μi

(

fi −
s∑

v=1

yiv

))
(
eθi1 − 1

)

+ sγ
k∑

i=1

s−1∑

v=1

yiv
(
e−θiv+θi,v+1 − 1

) + sγ
k∑

i=1

yis
(
e−θis − 1

)
.

It is immediate from equation (17) of Clancy (2015) that the deterministic endemic
equilibrium point is given by

y∗
iv = y∗

i

s
for i = 1, 2, . . . , k, v = 1, 2, . . . , s,

where y∗
i is the solution (13) for the model with exponentially distributed infectious

periods (s = 1).
It is straightforward to show that the elements of θ∗ are given by

θ∗
iv = −(s + 1 − v) ln (1 + λi Ds(μ,λ))

where Ds(μ,λ) is the solution of

β

sγ

k∑

j=1

μ j f jλ j

s∑

v=1

(
1

1 + λ j Ds(μ,λ)

)v

= 1. (27)

For the SIS model with Erlang-distributed infectious periods in a homogeneous
population (k = 1), the solution U (θ) to the relevant Hamilton–Jacobi equation was
found in Clancy and Tjia (2018) to be

U (θ) = ln

(
s∑

v=1

eθv

)

+ γ

β

(
s

∑s
v=1 e

θv

)

.
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Taking the Legendre transform, we find that V ( y) for this homogeneous-population
model is given by

V ( y) = sup
θ

{
θT y −U (θ)

}

=
s∑

v=1

yv

(

1 + ln yv − ln

(
β

sγ

))

−
(

s∑

v=1

yv

)

ln

(
s∑

v=1

yv

)

+
(

1 −
s∑

v=1

yv

)

ln

(

1 −
s∑

v=1

yv

)

. (28)

Comparing solution (28) for the SIS model with Erlang-distributed infectious
periods in a homogeneous population and solution (20) for the SIS model with expo-
nentially distributed infectious periods and heterogeneous susceptibilities, one may
now guess the form of the solution V ( y) for the SIS model with Erlang-distributed
infectious periods and heterogeneous susceptibilities, and verify that the relevant
Hamilton–Jacobi equation is indeed satisfied. The solution is thus found to be

V ( y) =
k∑

i=1

s∑

v=1

yiv

(

1 + ln yiv − ln

(
β

sγ
μi

))

−
(

k∑

i=1

s∑

v=1

yiv

)

ln

(
k∑

i=1

s∑

v=1

yiv

)

+
k∑

i=1

(

fi −
s∑

v=1

yiv

)

ln

(

fi −
s∑

v=1

yiv

)

. (29)

Taking the Legendre transform, we find

U (θ) =
k∑

i=1

fi ln

(

1 + μi

(
s∑

v=1

eθiv

)

Qs(μ, θ)

)

− γ s

β
Qs(μ, θ)

where Qs(μ, θ) is the solution of

β

γ s

k∑

j=1

μ j f j
(∑s

v=1 e
θ jv

)

1 + μ j
(∑s

v=1 e
θ jv

)
Qs(μ, θ)

= 1.

The action A in this case is thus

A = V (0) − V ( y∗)
= U (0) −U (θ∗) =

∑

i

fi ln (1 + μi D(1,μ)) − γ

β
D(1,μ),

as before, and the following result is immediate.
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Fig. 3 The effect of the infectious period distribution upon the mean persistence time of infection τ . Fixed
parameter values k = 2, f = (0.5, 0.5), R0 = 1.2, γ = 1. Solid line (‘Action’) has gradient A ≈ 0.0110
given by Eq. (18) with λ = (5/3, 1/3), μ = (1, 1), intercept chosen arbitrarily; dashed line (‘Exponential
infectious periods’) computed from Eq. (3) with λ = (5/3, 1/3), μ = (1, 1); crosses (‘Heterogeneous
susceptibilities’) computed via simulation with λ = (1, 1),μ = (5/3, 1/3) and constant infectious periods;
circles (‘Heterogeneous infectivities’) computed via simulation with λ = (5/3, 1/3), μ = (1, 1) and
constant infectious periods

Theorem 3 Theorem 1(ii) remains valid if infectious periods are allowed to follow
an Erlang, rather than exponential, distribution. Consequently, Theorem 2(ii) likewise
remains valid with Erlang-distributed infectious periods.

Figure 3 illustrates the effect of the infectious period distribution in the case of
k = 2 equal-sized groups ( f1 = f2 = 0.5). In constructing this figure, we have
assumed (without proof) that asymptotic formula (1) is valid for our model. Conse-
quently, we plot the function 1

2 ln N + ln τ , which according to formula (1) should, as
N increases, approach a straight line of gradient A and intercept lnC . The dashed line,
corresponding to exponentially distributed infectious periods, was computed using the
eigenvalue characterisation (3). By network duality, this dashed linemay be interpreted
as corresponding to either heterogeneous infectivity (λ = (5/3, 1/3), μ = (1, 1)) or
heterogeneous susceptibility (λ = (1, 1),μ = (5/3, 1/3)). We usedMonte Carlo sim-
ulation to estimate the mean persistence time τ with constant (non-random) infectious
periods for the cases of heterogeneous infectivity and heterogeneous susceptibility
separately. This infectious period distribution corresponds to an Erlang distribution
with s stages in the limit as s → ∞. An issue that arises is that the time until extinction
of infection, starting from quasi-stationarity, is exponentially distributed with mean
increasing exponentially in population size, so that to simulate the process to extinc-
tion can be very time-consuming. To get around this, we fixed times t0 (the burn-in
period) and tmax such that (i) by time t0 the state of the process is approximately quasi-
stationary (having started at time zero close to the re-scaled deterministic equilibrium
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point N y∗, and conditioning upon survival to time t0); and (ii) by time tmax a sub-
stantial proportion of all simulations have reached extinction. We then estimated the
mean time to extinction τ using the maximum likelihood estimator. That is, denoting
by T1, T2, . . . , Tr the extinction times of those simulations that went extinct within the
time window (t0, tmax ), and by m the number of simulations that had not gone extinct
by time tmax , our estimate is

τ̂ = m (tmax − t0) + ∑r
i=1(Ti − t0)

r
.

We have included in Fig. 3 a solid line with gradient equal to the action A computed
from formula (18). Note that the intercept of this line was chosen arbitrarily, since we
have no way to evaluate the constant C in formula (1) for our model.

We see from Fig. 3 that the dashed line corresponding to exponentially distributed
infectious periods does indeed appear to be a straight line of gradient A, providing
some confirmation both that the action A gives a reasonable approximation to (ln τ)/N
for population sizes above N = 200 and that formula (1) is valid for our model. With
constant infectious periods, we see that heterogeneous infectivity and heterogeneous
susceptibility result in almost identical estimates of τ , and that these estimates lie
close to a straight line of gradient A. It appears that, as with exponentially distributed
infectious periods, the value of τ is unchanged if we interchange λ,μ. We therefore
conjecture that, similarly to Theorem 3 above, Theorem 1(i) and Theorem 2(i) remain
valid with Erlang-distributed infectious periods. The model with constant infectious
periods has reducedmean persistence time τ compared to themodelwith exponentially
distributed infectious periods, but the difference is in the pre-factor constant C and
not the leading-order constant A, in line with the results of Ball et al. (2016) for the
homogeneous population case.

7 Discussion and possible extensions

The main result of this paper, Theorem 1, provides a simple explicit formula for
limN→∞(ln τ)/N , where τ is the expected time from endemicity to extinction for an
SIS infectionmodel with heterogeneity in either infectivity or susceptibility of individ-
uals, in a population of size N . The only infection model for which such a formula has
previously been available is the SIS model in a homogeneous population, either with
exponentially distributed infectious periods (Andersson and Djehiche 1998) or with
arbitrary infectious period distribution (Ball et al. 2016). Theorem 1 thus represents a
significant advance, but many open questions remain.

Firstly, for the SIS model in a homogeneous population, both of Andersson and
Djehiche (1998) and Ball et al. (2016) established asymptotic approximations for τ

of the form (1), with explicit formulae for the pre-factor constant C . Our result is less
precise than this; we have not shown that an asymptotic formula of the form (1) is valid
for our model (although we conjecture, and have presented some numerical evidence,
that this is the case), nor have we attempted to evaluate the pre-factor constant C . The
asymptotic form (1) has been shown by Assaf and Meerson (2010) to be valid (and
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formulae given for the constant C) for general 1-dimensional processes of bounded
jump size. The technique of Assaf andMeerson (2010) is an extension of the approach
employed here, retaining terms beyond the leading order in N . The analysis is consid-
erably more intricate than the leading-order treatment we have restricted ourselves to,
and the extension of the approach of Assaf and Meerson (2010) to multi-dimensional
processes such as the infection model considered here is the subject of ongoing work.

Secondly, our model as described in Sect. 2 incorporates heterogeneity in both
infectivity and susceptibility simultaneously, but we have only been able to provide an
explicit asymptotic formula for the cases inwhich only one of these twoheterogeneities
is present. When both heterogeneities are present, provided R0 is only slightly above
one then Ã given by formula (25) can be used to approximate A = limN→∞(ln τ)/N ,
and in Fig. 2 we saw that Ã can indeed provide a reasonable approximation to A.
However, even a small error in A can correspond to a very large error in our estimate
of τ , so that an approximate formula such as (25) is of considerably less utility than
an exact formula such as (18). In particular, the fact that we have not been able to
find an exact formula such as (18) valid when both types of heterogeneity are present
severely restricts the class of networks to which our results may be applied under
the annealed network approximation—we require either that every individual has the
same in-degree, or that every individual has the same out-degree. Nevertheless, for
the class of directed networks to which they apply our results represent an interesting
step forward, and since network models are of great ongoing interest in infection
modelling, we now present our results in a form suited to the network interpretation.

As a preliminary to the statement of our results, we require the concept of convex
ordering of random variables, defined as follows (Shaked and Shanthikumar 2007,
section 3.A.1). Given two randomvariables X (1), X (2), then X (2) is greater than X (1) in
the sense of convex ordering, denoted X (1) ≤cv X (2), if E

[
φ

(
X (1)

)] ≤ E
[
φ

(
X (2)

)]

for all convex functions φ(·). If X (1), X (2) take values in {1, 2, . . . , dmax}, then an
equivalent definition is that

j∑

i=1

P
(
X (1) ≤ i

)
≤

j∑

i=1

P
(
X (2) ≤ i

)
for j = 1, 2, . . . , dmax.

Note that X (1) ≤cv X (2) implies E
[
X (1)

] = E
[
X (2)

]
; intuitively, X (2) is ‘more

variable’ than X (1).
In comparing two populations, we need to define our ‘groups’ slightly differently

than in Sect. 2. Specifically, partition the population into groups in such a way that two

individuals belong to the same group if they share the same values of both
(
d(1)
in , d(1)

out

)

and
(
d(2)
in , d(2)

out

)
; the condition f (1) = f (2) = f required by Theorem 2 is thus

satisfied. (As before, superscripts (1), (2) denote the population under consideration.)

Theorem 4 Consider an SIS infection in a population of N individuals connected by
an uncorrelated directed network. Each individual has in-degree and out-degree dis-
tributed as (din, dout), the degrees of distinct individuals being mutually independent,
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with E [din] = E [dout] = μ and din, dout ≤ dmax for some dmax ∈ N. Infection trans-
mits along each link from an infectious to a susceptible individual at rate κ , and when
an individual becomes infected it remains so for a time of mean 1/γ before returning
to the susceptible state. Recall that τ denotes the expected time from quasi-stationarity
to extinction of infection.

(a) Suppose that P (din = μ) = 1, so every individual has the same in-degree, and
that infectious periods are exponentially distributed. Then

(i) limN→∞
ln τ

N
≈ Aout, with

Aout =
dmax∑

i=1

P (dout = i) ln (1 + i Dout) − γ

κ
Dout

where Dout is the solution of

κ

γ

dmax∑

j=1

j P (dout = j)

1 + j Dout
= 1;

(ii) for two populations with κ(1) = κ(2), γ (1) = γ (2),

d(1)
out ≤cv d(2)

out ⇒ A(1)
out ≥ A(2)

out;

in particular, Aout ismaximisedwhen every individual has the same out-degree,
P (dout = μ) = 1.

(b) Suppose that P (dout = μ) = 1, so every individual has the same out-degree, and
that infectious periods follow an Erlang distribution. Then

(i) limN→∞
ln τ

N
≈ Ain, with

Ain =
dmax∑

i=1

P (din = i) ln (1 + i Din) − γ

κ
Din

where Din is the solution of

κ

γ

dmax∑

j=1

j P (din = j)

1 + j Din
= 1;

(ii) for two populations with κ(1) = κ(2), s(1) = s(2), γ (1) = γ (2),

d(1)
in ≤cv d(2)

in ⇒ A(1)
in ≥ A(2)

in ;

in particular, Ain is maximised when every individual has the same in-degree,
P (din = μ) = 1.
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Note that our asymptotic results (Theorem 1) are exact for the model with transition
rates given by Table 1, but approximate under the annealed network interpretation.

A third open issue is to allow for more general infectious period distributions in
the case of heterogeneous infectivity (or heterogeneous out-degree, under the network
interpretation). We conjecture that Theorem 1(i) remains valid, and hence also The-
orem 2(i) and Theorem 4(a), if infectious periods are allowed to follow an Erlang,
rather than exponential, distribution. Indeed, Fig. 3 suggests that the mean persistence
time τ is unchanged when λ,μ are interchanged. A difficulty here is that, in contrast
to the case of heterogeneous susceptibilities, we have not been able to find complete
solutions U (θ), V ( y) to the relevant Hamilton–Jacobi equations even for the case
of exponentially distributed infectious periods, but only, in proving Theorem 1(i), to
evaluate U (θ) along one particular trajectory.

One advantage of simple asymptotic formulae such as provided by Theorem 1, as
opposed to the exact formula (3), is that they provide a route to qualitative results
such as Theorem 2, that increasing heterogeneity reduces (at least to leading order)
the expected persistence time of infection, and in particular that persistence time is
maximised in a homogeneous population. Theorem 2 establishes this ordering when
heterogeneity is in either infectivity or susceptibility; figure 2 suggests that the result
remains true even when both types of heterogeneity are present. It is interesting to
compare with the results contained in section 5 of Clancy and Pearce (2013) regarding
the effect of such heterogeneities upon the (large population) mean endemic preva-
lence level y∗ = ∑k

i=1 y
∗
i . Theorem 7(i) and theorem 10 of Clancy and Pearce (2013)

show, respectively, that heterogeneous infectivity alone has no effect upon the endemic
prevalence level y∗, whereas heterogeneous susceptibility alone can only decrease y∗,
with μ(1) ≺ f μ(2) ⇒ y∗(1) ≥ y∗(2), corresponding to our Theorem 2(ii) for persis-
tence times.When both types of heterogeneity are combined, theorem 8 of Clancy and
Pearce (2013) shows that if infectivity and susceptibility are non-negatively correlated
(
∑k

i=1 λiμi fi ≥ 1) then the endemic prevalence level cannot be greater than for a
homogeneous population with the same R0 value. However, theorem 9 of Clancy and
Pearce (2013) together with numerical work shown in figure 3 of Clancy and Pearce
(2013) demonstrates that when infectivity and susceptibility are negatively correlated
it is possible for the endemic prevalence level to be greater than in the homogeneous
case (with R0 values matched). This presents an interesting contrast to our numerical
results in Fig. 2,where heterogeneitieswere found to always decrease (to leadingorder)
the expected persistence time, regardless of whether λ,μ are positively or negatively
correlated.

There is a slightly counter-intuitive aspect to the above results, in that an increase
in endemic prevalence level may correspond to a decrease in expected persistence
time. This is easily resolved by observing that an increase in prevalence level may be
accompanied by a corresponding increase in variability, leading to faster extinction
of infection. The effect of heterogeneities upon the variability of the quasi-stationary
distribution is studied in section 6 of Clancy and Pearce (2013), via an Ornstein–
Uhlenbeck diffusion approximation that leads to a multivariate normal approximation
to the quasi-stationary distribution q. The variability of this approximating normal
distribution is then used as a proxy measure of persistence time. This approach seems
reasonable in terms of qualitative comparisons between infection models, and is com-
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mon in the literature. However, the approach is known to give a very bad numerical
approximation to mean persistence time, with incorrect leading-order asymptotic
behaviour, due to the failure in the lower tail of the normal approximation to the
quasi-stationary distribution (Doering et al. 2005; Clancy and Tjia 2018). The meth-
ods of the current paper, in contrast, deal directly with the expected persistence time
and yield correct leading-order asymptotic formulae.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix

The Hamilton–Jacobi equations (7) amount to two alternative ways of expressing the
eigenvector equation (3), retaining only terms of leading order in N in the limit as
N → ∞. We briefly outline the derivation of each equation, referring the reader
to Assaf and Meerson (2017) and references therein for full details.

For a process with transition rates of the form (4), Eq. (3) may be written as

∑

l∈L

(

qx−lWl

(
x − l
N

)

− qxWl

( x
N

))

= −(τN )−1qx for x ∈ C. (30)

Suppose (ansatz) that qx = exp (−NV (x/N ) + o(N )) for some function V (·).
Writing y = x/N , then V

(
y − l

N

)
= V ( y) − (lT /N ) ∂V

∂ y + o(1/N ) and hence

qx−l =
(

exp

(

lT
∂V

∂y

)

+ o(1)

)

qx .

Similarly, Wl

(
y − l

N

)
= Wl ( y) + o(1/N ). Retaining only terms of leading order

in N , and assuming that τ is sufficiently large for the right hand side of Eq. (30) to be
neglected, then Eq. (30) reduces to

∑

l∈L
Wl ( y)

(

exp

(

lT
∂V

∂ y

)

− 1

)

= 0.

That is, H
(
y, ∂V

∂ y

)
= 0.

Next, consider the moment generating function M(θ) = ∑
x∈C eθT xqx . Multiply-

ing Eq. (30) by eθT x and summing over x we find

∑

x∈C

∑

l∈L
eθT xqxWl

( x
N

) (
eθT l − 1

)
= −(τN )−1M(θ).
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That is,
∑

l∈L

(
eθT l − 1

)
Wl

(
1

N

∂

∂θ

)

M(θ) = −(τN )−1M(θ). (31)

Suppose (ansatz) that M(θ) = exp (NU (θ) + o(N )) for some function U (·), so
thatU (·) gives the leading-order term in the cumulant generating function of the quasi-
stationary distribution q. Retaining only terms of leading order in N and assuming
that τ is sufficiently large for the right hand side of Eq. (31) to be neglected, then
Eq. (31) reduces to

∑

l∈L

(
eθT l − 1

)
Wl

(
∂U

∂θ

)

= 0.

That is, H
(

∂U
∂θ

, θ
) = 0.

Note that theHamilton–Jacobi equations (7) thus have boundary conditionsU (0) =
V ( y∗) = 0. However, we can add an arbitrary constant to any solution of either Eq. (7)
and still have a solution, and any such additive constant will cancel out when we come
to estimate (ln τ)/N using Eq. (8). We therefore ignore the boundary conditions and
instead choose additive constants so as to keep our presented solutions forU (θ), V ( y)
as simple as possible.
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