18 research outputs found

    Characterization of Mauritius parakeet (Psittacula eques) microsatellite loci and their cross-utility in other parrots (Psittacidae, Aves).

    Get PDF
    We characterized 21 polymorphic microsatellite loci in the endangered Mauritius parakeet (Psittacula eques). Loci were isolated from a Mauritius parakeet genomic library that had been enriched separately for eight different repeat motifs. Loci were characterized in up to 43 putatively unrelated Mauritius parakeets from a single population inhabiting the Black River Gorges National Park, Mauritius. Each locus displayed between three and nine alleles, with the observed heterozygosity ranging between 0.39 and 0.96. All loci were tested in 10 other parrot species. Despite testing few individuals, between seven and 21 loci were polymorphic in each of seven species tested

    Widespread gene flow between oceans in a pelagic seabird species complex

    Get PDF
    Global-scale gene flow is an important concern in conservation biology as it has the potential to either increase or decrease genetic diversity in species and populations. Although many studies focus on the gene flow between different populations of a single species, the potential for gene flow and introgression between species is understudied, particularly in seabirds. The only well studied example of a mixed-species, hybridising population of petrels exists on Round Island, in the Indian Ocean. Previous research assumed that Round Island represents a point of secondary contact between Atlantic (Pterodroma arminjoniana) and Pacific species (P. neglecta and P. heraldica). This study uses microsatellite genotyping and tracking data to address the possibility of between-species hybridisation occurring outside the Indian Ocean. Dispersal and gene flow spanning three oceans was demonstrated between the species in this complex. Analysis of migration rates estimated using BAYESASS revealed unidirectional movement of petrels from the Atlantic and Pacific into the Indian Ocean. Conversely, STRUCTURE analysis revealed gene-flow between species of the Atlantic and Pacific Oceans, with potential three-way hybrids occurring outside the Indian Ocean. Additionally, geolocation tracking of Round Island petrels revealed two individuals travelling to the Atlantic and Pacific. These results suggest that inter-specific hybrids in Pterodroma petrels are more common than was previously assumed. This study is the first of its kind to investigate gene flow between populations of closely related Procellariform species on a global scale, demonstrating the need for consideration of widespread migration and hybridisation in the conservation of threatened seabirds

    MSH6 and PMS2 mutation positive Australian Lynch syndrome families: novel mutations, cancer risk and age of diagnosis of colorectal cancer

    Get PDF
    Background: Approximately 10% of Lynch syndrome families have a mutation in MSH6 and fewer families have a mutation in PMS2. It is assumed that the cancer incidence is the same in families with mutations in MSH6 as in families with mutations in MLH1/MSH2 but that the disease tends to occur later in life, little is known about families with PMS2 mutations. This study reports on our findings on mutation type, cancer risk and age of diagnosis in MSH6 and PMS2 families. Methods: A total of 78 participants (from 29 families) with a mutation in MSH6 and 7 participants (from 6 families) with a mutation in PMS2 were included in the current study. A database of de-identified patient information was analysed to extract all relevant information such as mutation type, cancer incidence, age of diagnosis and cancer type in this Lynch syndrome cohort. Cumulative lifetime risk was calculated utilising Kaplan-Meier survival analysis. Results: MSH6 and PMS2 mutations represent 10.3% and 1.9%, respectively, of the pathogenic mutations in our Australian Lynch syndrome families. We identified 26 different MSH6 and 4 different PMS2 mutations in the 35 families studied. We report 15 novel MSH6 and 1 novel PMS2 mutations. The estimated cumulative risk of CRC at age 70 years was 61% (similar in males and females) and 65% for endometrial cancer in MSH6 mutation carriers. The risk of developing CRC is different between males and females at age 50 years, which is 34% for males and 21% for females. Conclusion: Novel MSH6 and PMS2 mutations are being reported and submitted to the current databases for identified Lynch syndrome mutations. Our data provides additional information to add to the genotype-phenotype spectrum for both MSH6 and PMS2 mutations

    <it>MSH6 </it>and <it>PMS2 </it>mutation positive Australian Lynch syndrome families: novel mutations, cancer risk and age of diagnosis of colorectal cancer

    No full text
    Abstract Background Approximately 10% of Lynch syndrome families have a mutation in MSH6 and fewer families have a mutation in PMS2. It is assumed that the cancer incidence is the same in families with mutations in MSH6 as in families with mutations in MLH1/MSH2 but that the disease tends to occur later in life, little is known about families with PMS2 mutations. This study reports on our findings on mutation type, cancer risk and age of diagnosis in MSH6 and PMS2 families. Methods A total of 78 participants (from 29 families) with a mutation in MSH6 and 7 participants (from 6 families) with a mutation in PMS2 were included in the current study. A database of de-identified patient information was analysed to extract all relevant information such as mutation type, cancer incidence, age of diagnosis and cancer type in this Lynch syndrome cohort. Cumulative lifetime risk was calculated utilising Kaplan-Meier survival analysis. Results MSH6 and PMS2 mutations represent 10.3% and 1.9%, respectively, of the pathogenic mutations in our Australian Lynch syndrome families. We identified 26 different MSH6 and 4 different PMS2 mutations in the 35 families studied. We report 15 novel MSH6 and 1 novel PMS2 mutations. The estimated cumulative risk of CRC at age 70 years was 61% (similar in males and females) and 65% for endometrial cancer in MSH6 mutation carriers. The risk of developing CRC is different between males and females at age 50 years, which is 34% for males and 21% for females. Conclusion Novel MSH6 and PMS2 mutations are being reported and submitted to the current databases for identified Lynch syndrome mutations. Our data provides additional information to add to the genotype-phenotype spectrum for both MSH6 and PMS2 mutations.</p

    Spatial genetic architecture of the critically-endangered Maui Parrotbill (Pseudonestor xanthophrys): management considerations for reintroduction strategies

    No full text
    Conservation translocations are an important tool to circumvent extinctions on oceanic islands. A thorough understanding of all components of a species’ biology, including genetic diversity and structure, can maximize their likelihood of success. The Maui Parrotbill (Pseudonestor xanthophrys) is an endangered Hawaiian honeycreeper endemic to the island of Maui. With a population of approximately 500 individuals restricted to 50 km2 of habitat, this species is at high risk of extinction. Using nuclear and mitochondrial DNA, this study quantified the levels of genetic diversity and structure in wild and captive parrotbill populations, and compared these genetic patterns to those observed within levels of contemporary and historical nuclear diversity derived from 100-year old museum samples. Substantial differences in the effective population sizes estimated between contemporary and historical parrotbill populations highlight the impact that introduced disease had on this species just before the turn of the century. Contemporary parrotbill diversity was low (global F st = 0.056), and there has been a 96 % reduction in genetic effective population size between contemporary and historical samples. This should not eliminate a conservation translocation (or reintroduction) as a viable recovery option. Measures of population differentiation (pairwise F st and R st ) between different sections of the current population on either side of the Koolau Gap suggest that current genetic structure may be the result of this topographic barrier to gene flow. These data can enable the design of a conservation translocation strategy that is tailored to the patterns of genetic structure across the species’ range

    DNA repair gene polymorphisms and risk of early onset colorectal cancer in Lynch syndrome

    No full text
    DNA repair plays a pivotal role in maintaining genomic integrity with over 130 genes involved in various repair pathways that include base excision repair, nucleotide excision repair, double strand break repair and DNA mismatch repair. Polymorphisms within genes that are involved in these processes have been widely reported to be associated with cancer susceptibility in an extensive range of malignancies that include colorectal cancer (CRC). Lynch syndrome is caused by inherited germline mutations in DNA mismatch repair genes, predominantly in MLH1 and MSH2, that predispose to a variety of epithelial malignancies, most notably CRC. Despite being a relatively well understood hereditary cancer syndrome there remain several questions in relation to genetic influences on disease expression. Since Lynch syndrome is associated with a breakdown in DNA mismatch repair variation in other DNA repair genes may influence disease expression. In this report we have genotyped 424 Australian and Polish Lynch syndrome participants for eight common DNA repair gene polymorphisms to assess any association with the age of CRC onset. The DNA repair gene SNPs included in the study were: BRCA2 (rs11571653), MSH3 (rs26279), Lig4 (rs1805386), OGG1 (rs1052133), XRCC1 (rs25487), XRCC2 (rs3218536 and rs1799793) and XRCC3 (rs861539). Cox multi-variant regression modelling failed to provide any convincing evidence of an effect in any of the polymorphisms analysed. The data suggest that polymorphisms in DNA repair genes do not contribute to cancer risk in a population of CRC patients who are at increased risk of disease as a result in a deficiency of DNA mismatch repair

    Long-term, fine-scale temporal patterns of genetic diversity in the restored Mauritius parakeet reveal genetic impacts of management and associated demographic effects on reintroduction programmes

    No full text
    Threatened populations of birds are often restored after bottleneck events by using reintroduction techniques. Whilst population numbers are often increased by using such measures, the long-term genetic effects of reintroductions and post-release management of the resulting populations are frequently overlooked. We identify an overall declining trend in population-wide estimates of genetic diversity over two decades since the initial recovery of the population from the most severe part of this species’ bottleneck. Additionally, by incorporating the genotypes of known founding individuals into population viability simulations, we evaluate the genetic effects of population management under various scenarios at both the metapopulation and subpopulation levels. We reveal that whilst population augmentation has led to increased genetic homogenisation among subpopulations, significant differentiation still exists. Simulations predict that even with a low level of natural dispersal leading to gene-flow this differentiation could be ameliorated. We conclude by offering a number of key recommendations relating to post-recovery management of reintroduced bird populations which support the encouragement of individual dispersal using established management techniques such as artificial nest-site provisioning
    corecore