51 research outputs found

    Hemodynamic and thrombogenic analysis of a trileaflet polymeric valve using a fluid-structure interaction approach

    Get PDF
    Surgical valve replacement in patients with severe calcific aortic valve disease using either bioprosthetic or mechanical heart valves is still limited by structural valve deterioration for the former and thrombosis risk mandating anticoagulant therapy for the latter. Prosthetic polymeric heart valves have the potential to overcome the inherent material and design limitations of these valves, but their development is still ongoing. The aim of this study was to characterize the hemodynamics and thrombogenic potential of the Polynova polymeric trileaflet valve prototype using a fluid-structure interaction (FSI) approach. The FSI model replicated experimental conditions of the valve as tested in a left heart simulator. Hemodynamic parameters (transvalvular pressure gradient, flow rate, maximum velocity, and effective orifice area) were compared to assess the validity of the FSI model. The thrombogenic footprint of the polymeric valve was evaluated using a Lagrangian approach to calculate the stress accumulation (SA) values along multiple platelet trajectories and their statistical distribution. In the commissural regions, platelets were exposed to the highest SA values because of highest stress levels combined with local reverse flow patterns and vortices. Stress-loading waveforms from representative trajectories in regions of interest were emulated in our Hemodynamic Shearing Device (HSD). Platelet activity was measured using our platelet activation state (PAS) assay and the results confirmed the higher thrombogenic potential of the commissural hotspots. In conclusion, the proposed method provides an in depth analysis of the hemodynamic and thrombogenic performance of the polymer valve prototype and identifies locations for further design optimization

    Design of a vehicle based system to prevent ozone loss

    Get PDF
    Reduced quantities of ozone in the atmosphere allow greater levels of ultraviolet light (UV) radiation to reach the earth's surface. This is known to cause skin cancer and mutations. Chlorine liberated from Chlorofluorocarbons (CFC's) and natural sources initiate the destruction of stratospheric ozone through a free radical chain reaction. The project goals are to understand the processes which contribute to stratospheric ozone loss, examine ways to prevent ozone loss, and design a vehicle-based system to carry out the prevention scheme. The 1992/1993 design objectives were to accomplish the first two goals and define the requirements for an implementation vehicle to be designed in detail starting next year. Many different ozone intervention schemes have been proposed though few have been researched and none have been tested. A scheme proposed by R.J. Cicerone, Scott Elliot and R.P.Turco late in 1991 was selected because of its research support and economic feasibility. This scheme uses hydrocarbon injected into the Antarctic ozone hole to form stable compounds with free chlorine, thus reducing ozone depletion. Because most polar ozone depletion takes place during a 3-4 week period each year, the hydrocarbon must be injected during this time window. A study of the hydrocarbon injection requirements determined that 100 aircraft traveling Mach 2.4 at a maximum altitude of 66,000 ft. would provide the most economic approach to preventing ozone loss. Each aircraft would require an 8,000 nm. range and be able to carry 35,000 lbs. of propane. The propane would be stored in a three-tank high pressure system. Missions would be based from airport regions located in South America and Australia. To best provide the requirements of mission analysis, an aircraft with L/D(sub cruise) = 10.5, SFC = 0.65 (the faculty advisor suggested that this number is too low) and a 250,000 lb TOGW was selected as a baseline. Modularity and multi-role functionality were selected to be key design features. Modularity provides ease of turnaround for the down-time critical mission. Multi-role functionality allows the aircraft to be used beyond its design mission, perhaps as an High Speed Civil Transport (HSCT) or for high altitude research

    Behavior and Impact of Zirconium in the Soil–Plant System: Plant Uptake and Phytotoxicity

    Get PDF
    Because of the large number of sites they pollute, toxic metals that contaminate terrestrial ecosystems are increasingly of environmental and sanitary concern (Uzu et al. 2010, 2011; Shahid et al. 2011a, b, 2012a). Among such metals is zirconium (Zr), which has the atomic number 40 and is a transition metal that resembles titanium in physical and chemical properties (Zaccone et al. 2008). Zr is widely used in many chemical industry processes and in nuclear reactors (Sandoval et al. 2011; Kamal et al. 2011), owing to its useful properties like hardness, corrosion-resistance and permeable to neutrons (Mushtaq 2012). Hence, the recent increased use of Zr by industry, and the occurrence of the Chernobyl and Fukashima catastrophe have enhanced environmental levels in soil and waters (Yirchenko and Agapkina 1993; Mosulishvili et al. 1994 ; Kruglov et al. 1996)

    Kepler Data Release 25 Notes (Q0-Q17)

    Get PDF
    These Data Release Notes provide information specific to the current reprocessing and re-export of the Q0-Q17 data. The data products included in this data release include target pixel files, light curve files, FFIs,CBVs, ARP, Background, and Collateral files. This release marks the final processing of the Kepler Mission Data. See Tables 1 and 2 for a list of the reprocessed Kepler cadence data. See Table 3 for a list of the available FFIs. The Long Cadence Data, Short Cadence Data, and FFI data are documented in these data release notes. The ancillary files (i.e., cotrending basis vectors, artifact removal pixels, background, and collateral data) are described in the Archive Manual (Thompson et al., 2016)

    Timescales of Quartz Crystallization and the Longevity of the Bishop Giant Magma Body

    Get PDF
    Supereruptions violently transfer huge amounts (100 s–1000 s km3) of magma to the surface in a matter of days and testify to the existence of giant pools of magma at depth. The longevity of these giant magma bodies is of significant scientific and societal interest. Radiometric data on whole rocks, glasses, feldspar and zircon crystals have been used to suggest that the Bishop Tuff giant magma body, which erupted ∼760,000 years ago and created the Long Valley caldera (California), was long-lived (>100,000 years) and evolved rather slowly. In this work, we present four lines of evidence to constrain the timescales of crystallization of the Bishop magma body: (1) quartz residence times based on diffusional relaxation of Ti profiles, (2) quartz residence times based on the kinetics of faceting of melt inclusions, (3) quartz and feldspar crystallization times derived using quartz+feldspar crystal size distributions, and (4) timescales of cooling and crystallization based on thermodynamic and heat flow modeling. All of our estimates suggest quartz crystallization on timescales of <10,000 years, more typically within 500–3,000 years before eruption. We conclude that large-volume, crystal-poor magma bodies are ephemeral features that, once established, evolve on millennial timescales. We also suggest that zircon crystals, rather than recording the timescales of crystallization of a large pool of crystal-poor magma, record the extended periods of time necessary for maturation of the crust and establishment of these giant magma bodies

    Development and evaluation of a novel artificial catheter-deliverable prosthetic heart valve and method for in vitro testing

    No full text
    Background: This work presents a novel artificial prosthetic heart valve designed to be catheter or percutaneously deliverable, and a method for in vitro testing of the device. The device is intended to create superior characteristics in comparison to tissue-based percutaneous valves. Methods: The percutaneous heart valve (PHV) was constructed from state-of-the-art polymers, metals and fabrics. It was tested hydrodynamically using a modified left heart simulator (LHS) and statically using a tensile testing device. Results: The PHV exhibited a mean transvalvular pressure gradient of less than 15 mmhg and a mean regurgitant fraction of less than 5 percent. It also demonstrated a resistance to migration of up to 6 N and a resistance to crushing of up to 25 N at a diameter of 19 mm. The PHV was crimpable to less than 24 F and was delivered into the operating Lhs via a 24 F catheter. Conclusion: an artificial PHV was designed and optimized, and an in vitro methodology was developed for testing the valve. The artificial PHV compared favorably to existing tissue-based PHVs. The in vitro test methods proved to be reliable and reproducible. The PHV design proved the feasibility of an artificial alternative to tissue based PHVs, which in their traditional open-heart implantable form are known to have limited in vivo durability. © Wichtig Editore, 2009

    Thrombogenic potential of innovia polymer valves versus Carpentier-Edwards Perimount Magna Sortic Bioprosthetic Valves

    No full text
    Trileaflet polymeric prosthetic aortic valves (AVs) produce hemodynamic characteristics akin to the natural AV and may be most suitable for applications such as transcatheter implantation and mechanical circulatory support (MCS) devices. Their success has not yet been realized due to problems of calcification, durability, and thrombosis. We address the latter by comparing the platelet activation rates (PARs) of an improved polymer valve design (Innovia LLC) made from poly(styrene-block-isobutylene-block-styrene) (SIBS) with the commercially available Carpentier-Edwards Perimount Magna Aortic Bioprosthetic Valve. We used our modified prothrombinase platelet activity state (PAS) assay and flow cytometry methods to measure platelet activation of a pair of 19 mm valves mounted inside a pulsatile Berlin left ventricular assist device (LVAD). The PAR of the polymer valve measured with the PAS assay was fivefold lower than that of the tissue valve (p = 0.005) and fourfold lower with flow cytometry measurements (p = 0.007). In vitro hydrodynamic tests showed clinically similar performance of the Innovia and Magna valves. These results demonstrate a significant improvement in thrombogenic performance of the polymer valve compared with our previous study of the former valve design and encourage further development of SIBS for use in heart valve prostheses. Copyright © American Society of Artificial Internal Organs
    corecore