1,399 research outputs found

    Degassing history of water, sulfur, and carbon in submarine lavas from Kilauea volcano, Hawaii

    Get PDF
    Major, minor, and dissolved volatile element concentrations were measured in tholeiitic glasses from the submarine portion (Puna Ridge) of the east rift zone of Kilauea Volcano, Hawaii. Dissolved H_(2)O and S concentrations display a wide range relative to nonvolatile incompatible elements at all depths. This range cannot be readily explained by fractional crystallization, degassing of H20 and S during eruption on the seafloor, or source region heterogeneities. Dissolved C0_2 concentrations, in contrast, show a positive correlation with eruption depth and typically agree within error with the solubility at that depth. We propose that most magmas along the Puna Ridge result from (I) mixing of a relatively volatile-rich, undegassed component with magmas that experienced low pressure (perhaps subaerial) degassing during which substantial H_(2)O, S, and C0_2 were lost, followed by (2) fractional crystallization of olivine, clinopyroxene, and plagioclase from this mixture to generate a residual liquid; and (3) further degassing, principally of C0_2 for samples erupted deeper than 1000 m, during eruption on the seafloor. The degassed end member may form at upper levels of the summit magma chamber (assuming less than lithostatic pressure gradients), during residence at shallow levels in the crust, or during sustained summit eruptions. The final phase of degassing during eruption on the seafloor occurs slowly enough to achieve melt/vapor equilibrium during exsolution of the typically CO_(2)-rich vapor phase. We predict that average Kilauean primary magmas with 16% MgO contain ~0.47 wt% H_(2)O, ~900 ppm S, and have δD values of ~-30 to -40‰. Our model predicts that submarine lavas from wholly submarine volcanoes (i.e., Loihi), for which there is no opportunity to generate the degassed end member by low pressure degassing, will be enriched in volatiles relative to those from volcanoes whose summits have breached the sea surface (i.e., Kilauea and Mauna Loa)

    CP37 Apple cider and cider products

    Get PDF

    Social anxiety and its maintaining factors : accounting for the role of neuroticism

    Get PDF
    Models of social anxiety disorder (SAD) and research indicate several cognitive and behavioural maintaining factors that perpetuate social anxiety (i.e., maladaptive social-evaluative beliefs, self-focus, attention towards threat in environment, anticipatory processing, post-event processing, safety behaviours). It is unknown whether these maintaining factors are exclusive to social anxiety or if they are also related to neuroticism – a tendency to experience negative emotions. A community sample of adults (N = 263) completed measures of relevant constructs (social anxiety, neuroticism, depression, aforementioned maintaining factors). Structural equation modelling was used to analyse the cross-sectional data. In a good fitting model which included depression, social anxiety had unique positive associations with all maintaining factors. Neuroticism had unique positive associations with social-evaluative beliefs, self-focus, and post-event processing, but not with any of the other maintaining factors. This model also had superior fit compared to a plausible competing model which did not include neuroticism. Certain maintaining factors may not be exclusive to social anxiety, in contrast to how they are conceptualised in models of SAD. Furthermore, neuroticism may play a role in social anxiety, highlighting the potential of interventions for social anxiety to be advanced through greater incorporation of emotion regulation strategies for negative affect

    Mid-ocean-ridge rhyolite (MORR) eruptions on the East Pacific Rise lack the fizz to pop

    Get PDF
    Eruptions on the Alarcon Rise segment of the northern East Pacific Rise (23.55°N, 108.42°W) at 2500−2200 m below sea level (mbsl) produced the most compositionally diverse volcanic suite found along the submarine mid-ocean-ridge (MOR) system, offering an opportunity to compare mafic through silicic eruption styles at the same abyssal depth. Eruption styles that formed evolved volcanic rocks on the submarine MOR have not been studied in detail. The prevalence of lava flows along the MOR indicates that most eruptions are nonexplosive, but some volcaniclastic characteristics suggest that explosive styles also occur. Higher viscosities in intermediate (103–5 Pa·s) versus mafic (101 Pa·s) lavas on Alarcon Rise correspond with larger, more brecciated pillows, while highly viscous rhyolite lavas (106–7 Pa·s) formed rugged domes mostly composed of autoclastic breccia. Although high H2O contents (1.5–2.1 wt%), abundant volcaniclasts, and vesicularities up to 53% in rhyolite might imply eruption explosivity, limited fine-grained ash production and dispersal indicate an effusive origin. Higher viscosities of MOR rhyolite (MORR) magma and small eruption volumes, compared to MOR basalt (MORB), limit bubble coalescence and rapid magma ascent, two likely prerequisites for deep-marine eruption explosivity. This idea is supported by widespread dispersal of basaltic ash, but very limited production and dispersal of silicic ash on Alarcon Rise

    Identification and analysis of large paleo-landslides at Mount Burnaby, British Columbia

    Get PDF
    This is the author accepted manuscript. The final version is available from Geological Society of America via the DOI in this recordThis paper presents a multi-scale and multidisciplinary study of large, late Pleistocene or early Holocene slumps in Eocene sedimentary rocks at Mount Burnaby, just east of Vancouver, British Columbia (BC). Airborne LiDAR and field data were integrated into a GIS to understand the origin, kinematics, and subsequent history of the landslides. Products derived from the bare-earth LiDAR data include an engineering geomorphology map, shaded relief maps, and several LiDAR slope profiles. To understand the landslides better, we analyzed discontinuities and structural lineaments. The structure of the Eocene rocks underlying Mount Burnaby was compared with trends of local lineaments, and the shape of the coastline of Burrard Inlet and Indian Arm, and trends of regional faults and lineaments identified by previous researchers working in southwest BC. Two main joint systems likely played a key role in conditioning the north slope of Mount Burnaby for failure. The landslides probably happened during or soon after deglaciation of the area at the end of the Pleistocene on the steep north face of Mount Burnaby after a 200-m fall in relative sea level caused by glacio-isostatic uplift of the crust.We are grateful to BGC Engineering for its support of our research, and in particular acknowledge Alex Baumgard, who helped us secure LiDAR imagery and funding that allowed us to undertake the project. The research was supported with grants provided by Kinder Morgan Canada and the Natural Sciences and Engineering Research Council of Canada (NSERC Discovery Grants to ds and jjc)

    Preeruptive flow focussing in dikes feeding historical pillow ridges on the Juan de Fuca and Gorda Ridges

    Get PDF
    Linear, hummocky pillow mound volcanism dominates at slow and intermediate spreading rate mid-ocean ridges. Volcanic hummocks are thought to be formed by low effusion rates or as a result of flow focussing during effusive fissure style eruptions in which the initial dike intercepts the seafloor and erupts along its entire length. In this study, high-resolution autonomous underwater vehicle (AUV) bathymetry is used to accurately map the extents of four historical fissure eruptions of the Juan de Fuca and Gorda ridges: on the North Gorda, North Cleft, and CoAxial ridge segments. The four mapped eruptions take the form of pillow mounds, which are similar in both lithology and dimension to hummocks on the Mid-Atlantic Ridge. Pillow mounds may be isolated, or coalesce to form composite mounds, aligned as ridges or as clustered groups. In three of the four mapped sites, the eruptions were discontinuous along their lengths, with pillow mounds and composite mounds commonly separated by areas of older seafloor. This style of discontinuous eruption is inconsistent with typical en echelon fissure eruptions and is probably due to a mildly overpressured, fingering dike intersecting the seafloor along parts of its length

    Allopatric and Sympatric Drivers of Speciation in Alviniconcha Hydrothermal Vent Snails

    Get PDF
    Despite significant advances in our understanding of speciation in the marine environment, the mechanisms underlying evolutionary diversification in deep-sea habitats remain poorly investigated. Here, we used multigene molecular clocks and population genetic inferences to examine processes that led to the emergence of the six extant lineages of Alviniconcha snails, a key taxon inhabiting deep-sea hydrothermal vents in the Indo-Pacific Ocean. We show that both allopatric divergence through historical vicariance and ecological isolation due to niche segregation contributed to speciation in this genus. The split between the two major Alviniconcha clades (separating A. boucheti and A. marisindica from A. kojimai, A. hessleri, and A. strummeri) probably resulted from tectonic processes leading to geographic separation, whereas the splits between co-occurring species might have been influenced by ecological factors, such as the availability of specific chemosynthetic symbionts. Phylogenetic origin of the sixth species, Alviniconcha adamantis, remains uncertain, although its sister position to other extant Alviniconcha lineages indicates a possible ancestral relationship. This study lays a foundation for future genomic studies aimed at deciphering the roles of local adaptation, reproductive biology, and host–symbiont compatibility in speciation of these vent-restricted snails

    Automated equilibrium tension lysimeters for measuring water fluxes through a layered, volcanic vadose profile in New Zealand

    Get PDF
    In this technical note we present the design, installation, and evaluation of a field monitoring system to directly measure water fluxes through a vadose zone. The system is based on use of relatively new measurement technology-automated equilibrium tension lysimeters (AETLs). An AETL uses a porous sintered stainless-steel plate to provide a comparatively large sampling area (0.20 m(2)) with a continuously controlled vacuum applied under the plate. This vacuum is in "equilibrium" with the surrounding vadose zone tension to ensure measured fluxes represent those under undisturbed conditions. Fifteen of these AETLs have been installed at five depths through a layered volcanic vadose zone to study the impact of land use changes on water quality in Lake Taupo, New Zealand. We describe the development and testing of the AETLs, the methods used for installing these devices, a condensed data set of the measured physical properties of the vadose zone, and the initial results from the in situ operation of the AETLs, including the preliminary results from a bromide tracer test. For an AETL installed at the 0.4-m depth, where soil pressure heads are most dynamic, the average deviation between the target reference pressure head, as measured in the undisturbed vadose zone and the pressure head measured above the sampling plate was only 5.4 hPa over a 180-d period. The bromide recovered in an AETL at the same depth was equivalent to 96% of the bromide pulse applied onto the surface area directly above the AETL. We conclude that this measurement technique provides an accurate and robust method of measuring vadose zone fluxes. These measurements can ultimately contribute to better understanding of the water transport and contaminant transformation processes through vadose zones
    corecore