70 research outputs found

    Active shape correction of a thin glass/plastic X-ray mirror

    Full text link
    Optics for future X-ray telescopes will be characterized by very large aperture and focal length, and will be made of lightweight materials like glass or plastic in order to keep the total mass within acceptable limits. Optics based on thin slumped glass foils are currently in use in the NuSTAR telescope and are being developed at various institutes like INAF/OAB, aiming at improving the angular resolution to a few arcsec HEW. Another possibility would be the use of thin plastic foils, being developed at SAO and the Palermo University. Even if relevant progresses in the achieved angular resolution were recently made, a viable possibility to further improve the mirror figure would be the application of piezoelectric actuators onto the non-optical side of the mirrors. In fact, thin mirrors are prone to deform, so they require a careful integration to avoid deformations and even correct forming errors. This however offers the possibility to actively correct the residual deformation. Even if other groups are already at work on this idea, we are pursuing the concept of active integration of thin glass or plastic foils with piezoelectric patches, fed by voltages driven by the feedback provided by X-rays, in intra-focal setup at the XACT facility at INAF/OAPA. In this work, we show the preliminary simulations and the first steps taken in this project

    Development of mirrors made of chemically tempered glass foils for future X-ray telescopes

    Get PDF
    Thin slumped glass foils are considered good candidates for the realization of future X-ray telescopes with large effective area and high spatial resolution. However, the hot slumping process affects the glass strength, and this can be an issue during the launch of the satellite because of the high kinematical and static loads occurring during that phase. In the present work we have investigated the possible use of Gorilla glass (produced by Corning), a chemical tempered glass that, thanks to its strength characteristics, would be ideal. The un-tempered glass foils were curved by means of an innovative hot slumping technique and subsequently chemically tempered. In this paper we show that the chemical tempering process applied to Gorilla glass foils does not affect the surface micro-roughness of the mirrors. On the other end, the stress introduced by the tempering process causes a reduction in the amplitude of the longitudinal profile errors with a lateral size close to the mirror length. The effect of the overall shape changes in the final resolution performance of the glass mirrors was studied by simulating the glass foils integration with our innovative approach based on glass reinforcing ribs. The preliminary tests performed so far suggest that this approach has the potential to be applied to the X-ray telescopes of the next generation.Comment: Accepted for publication in Experimental Astronomy. Author's accepted manuscript posted to arXiv.org as permitted by Springer's Self-Archiving Polic

    Simbol-X Hard X-ray Focusing Mirrors: Results Obtained During the Phase A Study

    Full text link
    Simbol-X will push grazing incidence imaging up to 80 keV, providing a strong improvement both in sensitivity and angular resolution compared to all instruments that have operated so far above 10 keV. The superb hard X-ray imaging capability will be guaranteed by a mirror module of 100 electroformed Nickel shells with a multilayer reflecting coating. Here we will describe the technogical development and solutions adopted for the fabrication of the mirror module, that must guarantee an Half Energy Width (HEW) better than 20 arcsec from 0.5 up to 30 keV and a goal of 40 arcsec at 60 keV. During the phase A, terminated at the end of 2008, we have developed three engineering models with two, two and three shells, respectively. The most critical aspects in the development of the Simbol-X mirrors are i) the production of the 100 mandrels with very good surface quality within the timeline of the mission; ii) the replication of shells that must be very thin (a factor of 2 thinner than those of XMM-Newton) and still have very good image quality up to 80 keV; iii) the development of an integration process that allows us to integrate these very thin mirrors maintaining their intrinsic good image quality. The Phase A study has shown that we can fabricate the mandrels with the needed quality and that we have developed a valid integration process. The shells that we have produced so far have a quite good image quality, e.g. HEW <~30 arcsec at 30 keV, and effective area. However, we still need to make some improvements to reach the requirements. We will briefly present these results and discuss the possible improvements that we will investigate during phase B.Comment: 6 pages, 3 figures, invited talk at the conference "2nd International Simbol-X Symposium", Paris, 2-5 december, 200

    Lynx X-Ray Observatory: An Overview

    Get PDF
    Lynx, one of the four strategic mission concepts under study for the 2020 Astrophysics Decadal Survey, provides leaps in capability over previous and planned x-ray missions and provides synergistic observations in the 2030s to a multitude of space- and ground-based observatories across all wavelengths. Lynx provides orders of magnitude improvement in sensitivity, on-axis subarcsecond imaging with arcsecond angular resolution over a large field of view, and high-resolution spectroscopy for point-like and extended sources in the 0.2- to 10-keV range. The Lynx architecture enables a broad range of unique and compelling science to be carried out mainly through a General Observer Program. This program is envisioned to include detecting the very first seed black holes, revealing the high-energy drivers of galaxy formation and evolution, and characterizing the mechanisms that govern stellar evolution and stellar ecosystems. The Lynx optics and science instruments are carefully designed to optimize the science capability and, when combined, form an exciting architecture that utilizes relatively mature technologies for a cost that is compatible with the projected NASA Astrophysics budget

    Progress in ion beam figuring of very thin slumped glass plates for lightweight x-ray telescope

    Get PDF
    The combination of the hot slumping and the Ion Beam Figuring (IBF) technologies can be a very competitive solution for the realization of x-ray optics with excellent imaging capabilities and high throughput. While very thin mirrors segments can be realized by slumping with residual figure errors below few hundreds of nanometres, a non-contact and deterministic process (dependent on dwell time), like IBF, is a very effective post facto correction, as it avoids all the problems due to the handling and the supporting system. In the last years, the two processes were proven compatible with very thin sheet of Eagle XG glasses (0.4 mm thickness). Nevertheless, the fast convergence of the process is a key factor to limit the cost of the mirror plate production. A deeper characterization of removal function stability showed that its repeatability between each run has to be improved for a real enhancement of the process convergence factor. A new algorithm based on de-convolution has been implemented and tested, with important advantages in terms of calculation speed, minimum material removal and optimization possibilities. By analysing the metrological data of test slumped glasses, we showed how the IBF is effective in the correction of figure errors on scales above 8 - 10 mm. An overall figuring time of few hours is required with surface error around 100 nm rms. Thanks to the thickness measurement data, which are performed in transmission mode with an interferometric set-up, we demonstrated that it is possible to disentangle the effective amount of the material removed and the deformations introduced during the process

    Optical integration of SPO mirror modules in the ATHENA telescope

    Get PDF
    ATHENA (Advanced Telescope for High-ENergy Astrophysics) is the next high-energy astrophysical mission selected by the European Space Agency for launch in 2028. The X-ray telescope consists of 1062 silicon pore optics mirror modules with a target angular resolution of 5 arcsec. Each module must be integrated on a 3 m structure with an accuracy of 1.5 arcsec for alignment and assembly. This industrial and scientific team is developing the alignment and integration process of the SPO mirror modules based on ultra-violet imaging at the 12 m focal plane. This technique promises to meet the accuracy requirement while, at the same time, allowing arbitrary integration sequence and mirror module exchangeability. Moreover, it enables monitoring the telescope point spread function during the planned 3-year integration phase

    PHEMTO: the polarimetric high energy modular telescope observatory

    Get PDF
    Based upon dual focusing techniques, the Polarimetric High-Energy Modular Telescope Observatory (PHEMTO) is designed to have performance several orders of magnitude better than the present hard X-ray instruments, in the 1–600 keV energy range. This, together with its angular resolution of around one arcsecond, and its sensitive polarimetry measurement capability, will give PHEMTO the improvements in scientific performance needed for a mission in the 2050 era in order to study AGN, galactic black holes, neutrons stars, and supernovae. In addition, its high performance will enable the study of the non-thermal processes in galaxy clusters with an unprecedented accuracy

    Lynx optics based on full monolithic shells: design and development

    Get PDF
    Lynx is an X-ray mission concept with superb imaging capabilities (2 effective area @1keV). Several approaches are being considered to meet the challenging technological task of the mirror fabrication. Thin and light substrates are necessary to meet mass constraints. Monolithic fused silica shells are a possible solution if their thickness can be maintained to below 4 mm for mirror shells up to 3 m diameter. In this paper we present the opto-mechanical design of the mirror assembly, the technological processes, and the results achieved so far on a prototypal shells under development. In particular, emphasis is placed on the figuring process that is based on direct polishing and on ion beam figuring and on a temporary stiffening structure designed to support the shell during the figuring and polishing operations and to manage the handling of the shell through all phases up to integration into the telescope supporting structure
    corecore