92 research outputs found

    Nanocrystalline Zr3Al Made through Amorphization by Repeated Cold Rolling and Followed by Crystallization

    Full text link
    The intermetallic compound Zr3Al is severely deformed by the method of repeated cold rolling. By X-ray diffraction it is shown that this leads to amorphization. TEM investigations reveal that a homogeneously distributed debris of very small nanocrystals is present in the amorphous matrix that is not resolved by X-ray diffraction. After heating to 773 K, the crystallization of the amorphous structure leads to a fully nanocrystalline structure of small grains (10 - 20 nm in diameter) of the non-equilibrium Zr2Al phase. It is concluded that the debris retained in the amorphous phase acts as nuclei. After heating to 973 K the grains grow to about 100 nm in diameter and the compound Zr3Al starts to form, that is corresponding to the alloy composition

    Transcatheter closure of pfo and asd: Multimodality imaging for patient selection and perioperative guidance

    Get PDF
    Transcatheter closure of patent foramen ovale (PFO) and secundum type atrial septal defect (ASD) are common transcatheter procedures. Although they share many technical details, these procedures are targeting two different clinical indications. PFO closure is usually considered to prevent recurrent embolic stroke/systemic arterial embolization, ASD closure is indicated in patients with large left-to-right shunt, right ventricular volume overload, and normal pulmonary vascular resistance. Multimodality imaging plays a key role for patient selection, periprocedural monitoring, and follow-up surveillance. In addition to routine cardiovascular examinations, advanced neuroimag-ing studies, transcranial-Doppler, and interventional transesophageal echocardiography/intracardiac echocardiography are now increasingly used to deliver safely and effectively such procedures. Long-standing collaboration between interventional cardiologist, neuroradiologist, and cardiac imager is essential and it requires a standardized approach to image acquisition and interpretation. Peripro-cedural monitoring should be performed by experienced operators with deep understanding of technical details of transcatheter intervention. This review summarizes the specific role of different imaging modalities for PFO and ASD transcatheter closure, describing important pre-procedural and intra-procedural details and providing examples of procedural pitfall and complications

    Modelling knowlesi malaria transmission in humans: vector preference and host competence

    Get PDF
    Background: Plasmodium knowlesi, a malaria species that normally infects long-tailed macaques, was recently found to be prevalent in humans in Southeast Asia. While human host competency has been demonstrated experimentally, the extent to which the parasite can be transmitted from human back to mosquito vector in nature is unclear. Methods. Using a mathematical model, the influence of human host competency on disease transmission is assessed. Adapting a standard model for vector-borne disease transmission and using an evolutionary invasion analysis, the paper explores how differential host competency between humans and macaques can facilitate the epidemiological processes of P. knowlesi infection between different hosts. Results. Following current understanding of the evolutionary route of other human malaria vectors and parasites, an increasing human population in knowlesi malaria endemic regions will select for a more anthropophilic vector as well as a parasite that preferentially transmits between humans. Applying these adaptations, evolutionary invasion analysis yields threshold conditions under which this macaque disease may become a significant public health issue. Conclusions. These threshold conditions are discussed in the context of malaria vector-parasite co-evolution as a function of anthropogenic effects

    Confirming chemical clocks: asteroseismic age dissection of the Milky Way disc(s)

    Get PDF
    Investigations of the origin and evolution of the Milky Way disc have long relied on chemical and kinematic identifications of its components to reconstruct our Galactic past. Difficulties in determining precise stellar ages have restricted most studies to small samples, normally confined to the solar neighbourhood. Here, we break this impasse with the help of asteroseismic inference and perform a chronology of the evolution of the disc throughout the age of the Galaxy. We chemically dissect the Milky Way disc population using a sample of red giant stars spanning out to 2 kpc in the solar annulus observed by the Kepler satellite, with the added dimension of asteroseismic ages. Our results reveal a clear difference in age between the low- and high-α populations, which also show distinct velocity dispersions in the V and W components. We find no tight correlation between age and metallicity nor [α/Fe] for the high-α disc stars. Our results indicate that this component formed over a period of more than 2 Gyr with a wide range of [M/H] and [α/Fe] independent of time. Our findings show that the kinematic properties of young α-rich stars are consistent with the rest of the high-α population and different from the low-α stars of similar age, rendering support to their origin being old stars that went through a mass transfer or stellar merger event, making them appear younger, instead of migration of truly young stars formed close to the Galactic bar

    Confirming chemical clocks: asteroseismic age dissection of the Milky Way disk(s)

    Get PDF
    Investigations of the origin and evolution of the Milky Way disk have long relied on chemical and kinematic identification of its components to reconstruct our Galactic past. Difficulties in determining precise stellar ages have restricted most studies to small samples, normally confined to the solar neighbourhood. Here we break this impasse with the help of asteroseismic inference and perform a chronology of the evolution of the disk throughout the age of the Galaxy. We chemically dissect the Milky Way disk population using a sample of red giant stars spanning out to 2~kpc in the solar annulus observed by the {\it Kepler} satellite, with the added dimension of asteroseismic ages. Our results reveal a clear difference in age between the low- and high-α\alpha populations, which also show distinct velocity dispersions in the VV and WW components. We find no tight correlation between age and metallicity nor [α\alpha/Fe] for the high-α\alpha disk stars. Our results indicate that this component formed over a period of more than 2~Gyr with a wide range of [M/H] and [α\alpha/Fe] independent of time. Our findings show that the kinematic properties of young α\alpha-rich stars are consistent with the rest of the high-α\alpha population and different from the low-α\alpha stars of similar age, rendering support to their origin being old stars that went through a mass transfer or stellar merger event, making them appear younger, instead of migration of truly young stars formed close to the Galactic bar

    Transmission and control of Plasmodium knowlesi: a mathematical modelling study.

    Get PDF
    INTRODUCTION: Plasmodium knowlesi is now recognised as a leading cause of malaria in Malaysia. As humans come into increasing contact with the reservoir host (long-tailed macaques) as a consequence of deforestation, assessing the potential for a shift from zoonotic to sustained P. knowlesi transmission between humans is critical. METHODS: A multi-host, multi-site transmission model was developed, taking into account the three areas (forest, farm, and village) where transmission is thought to occur. Latin hypercube sampling of model parameters was used to identify parameter sets consistent with possible prevalence in macaques and humans inferred from observed data. We then explore the consequences of increasing human-macaque contact in the farm, the likely impact of rapid treatment, and the use of long-lasting insecticide-treated nets (LLINs) in preventing wider spread of this emerging infection. RESULTS: Identified model parameters were consistent with transmission being sustained by the macaques with spill over infections into the human population and with high overall basic reproduction numbers (up to 2267). The extent to which macaques forage in the farms had a non-linear relationship with human infection prevalence, the highest prevalence occurring when macaques forage in the farms but return frequently to the forest where they experience higher contact with vectors and hence sustain transmission. Only one of 1,046 parameter sets was consistent with sustained human-to-human transmission in the absence of macaques, although with a low human reproduction number (R(0H) = 1.04). Simulations showed LLINs and rapid treatment provide personal protection to humans with maximal estimated reductions in human prevalence of 42% and 95%, respectively. CONCLUSION: This model simulates conditions where P. knowlesi transmission may occur and the potential impact of control measures. Predictions suggest that conventional control measures are sufficient at reducing the risk of infection in humans, but they must be actively implemented if P. knowlesi is to be controlled

    The GALAH Survey: Chemical tagging and chrono-chemodynamics of accreted halo stars with GALAH+ DR3 and GaiaGaia eDR3

    Get PDF
    © 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1093/mnras/stab3504Since the advent of GaiaGaia astrometry, it is possible to identify massive accreted systems within the Galaxy through their unique dynamical signatures. One such system, GaiaGaia-Sausage-Enceladus (GSE), appears to be an early "building block" given its virial mass >1010M> 10^{10}\,\mathrm{M_\odot} at infall (z13z\sim1-3). In order to separate the progenitor population from the background stars, we investigate its chemical properties with up to 30 element abundances from the GALAH+ Survey Data Release 3 (DR3). To inform our choice of elements for purely chemically selecting accreted stars, we analyse 4164 stars with low-α\alpha abundances and halo kinematics. These are most different to the Milky Way stars for abundances of Mg, Si, Na, Al, Mn, Fe, Ni, and Cu. Based on the significance of abundance differences and detection rates, we apply Gaussian mixture models to various element abundance combinations. We find the most populated and least contaminated component, which we confirm to represent GSE, contains 1049 stars selected via [Na/Fe] vs. [Mg/Mn] in GALAH+ DR3. We provide tables of our selections and report the chrono-chemodynamical properties (age, chemistry, and dynamics). Through a previously reported clean dynamical selection of GSE stars, including 30<JR / kpckms1<5530 < \sqrt{J_R~/~\mathrm{kpc\,km\,s^{-1}}} < 55, we can characterise an unprecedented 24 abundances of this structure with GALAH+ DR3. Our chemical selection allows us to prevent circular reasoning and characterise the dynamical properties of the GSE, for example mean JR / kpckms1=2614+9\sqrt{J_R~/~\mathrm{kpc\,km\,s^{-1}}} = 26_{-14}^{+9}. We find only (29±1)%(29\pm1)\% of the GSE stars within the clean dynamical selection region. Our methodology will improve future studies of accreted structures and their importance for the formation of the Milky Way.Peer reviewedFinal Accepted Versio
    corecore