3,619 research outputs found

    Histochemical and morpho-metrical study of mouse intestine epithelium after a long term diet containing genetically modified soybean

    Get PDF
    Diet can influence the structural characteristics of both small and large intestine. In this study, we investigated the duodenum and colon of mice fed on genetically modified (GM) soybean during their whole life span (1–24 months) by focusing our attention on the histological and ultrastructural characteristics of the epithelium, the histochemical pattern of goblet cell mucins, and the growth profile of the coliform population. Our results demonstrate that controls and GM-soybean fed mice are similarly affected by ageing. Moreover, the GM soybean-containing diet does not induce structural alterations in duodenal and colonic epithelium or in coliform population, even after a long term intake. On the other hand, the histochemical approach revealed significant diet-related changes in mucin amounts in the duodenum. In particular, the percentage of villous area occupied by acidic and sulpho-mucin granules decreased from controls to GM-fed animals, whereas neutral mucins did not change

    Adhesion of ectomycorrhizal bacteria to plant cells: an in vitro evidence.

    Get PDF
    In this study we have investigated, by combining microbial and microscopical techniques, the adhesion ability of bacteria present in Tuber borchii ectomycorrhizosphere. Our data demonstrate that a common pool of bacteria — Pseudomonas, Bacillus, Micrococcus and Moraxella — occurs in all ectomycorrhizal homogenates and that most of these bacteria are able to attach in vitro to plant cells

    SIMBOL-X : a new generation hard X-ray telescope

    Full text link
    SIMBOL-X is a hard X-ray mission, operating in the 0.5-70 keV range, which is proposed by a consortium of European laboratories for a launch around 2010. Relying on two spacecraft in a formation flying configuration, SIMBOL-X uses a 30 m focal length X-ray mirror to achieve an unprecedented angular resolution (30 arcsec HEW) and sensitivity (100 times better than INTEGRAL below 50 keV) in the hard X-ray range. SIMBOL-X will allow to elucidate fundamental questions in high energy astrophysics, such as the physics of accretion onto Black Holes, of acceleration in quasar jets and in supernovae remnants, or the nature of the hard X-ray diffuse emission. The scientific objectives and the baseline concepts of the mission and hardware design are presented.Comment: 12 pages, 16 fig., Proc. SPIE conf. 5168, San Diego, Aug. 200

    An extension of the SHARC survey

    Full text link
    We report on our search for distant clusters of galaxies based on optical and X-ray follow up observations of X-ray candidates from the SHARC survey. Based on the assumption that the absence of bright optical or radio counterparts to possibly extended X-ray sources could be distant clusters. We have obtained deep optical images and redshifts for several of these objects and analyzed archive XMM-Newton or Chandra data where applicable. In our list of candidate clusters, two are probably galaxy structures at redshifts of z∼\sim0.51 and 0.28. Seven other structures are possibly galaxy clusters between z∼\sim0.3 and 1. Three sources are identified with QSOs and are thus likely to be X-ray point sources, and six more also probably fall in this category. One X-ray source is spurious or variable. For 17 other sources, the data are too sparse at this time to put forward any hypothesis on their nature. We also serendipitously detected a cluster at z=0.53 and another galaxy concentration which is probably a structure with a redshift in the [0.15-0.6] range. We discuss these results within the context of future space missions to demonstrate the necessity of a wide field of view telescope optimized for the 0.5-2 keV range.Comment: Accepted in A&

    The imaging properties of the Gas Pixel Detector as a focal plane polarimeter

    Full text link
    X-rays are particularly suited to probe the physics of extreme objects. However, despite the enormous improvements of X-ray Astronomy in imaging, spectroscopy and timing, polarimetry remains largely unexplored. We propose the photoelectric polarimeter Gas Pixel Detector (GPD) as an instrument candidate to fill the gap of more than thirty years of lack of measurements. The GPD, in the focus of a telescope, will increase the sensitivity of orders of magnitude. Moreover, since it can measure the energy, the position, the arrival time and the polarization angle of every single photon, allows to perform polarimetry of subsets of data singled out from the spectrum, the light curve or the image of source. The GPD has an intrinsic very fine imaging capability and in this work we report on the calibration campaign carried out in 2012 at the PANTER X-ray test facility of the Max-Planck-Institut f\"ur extraterrestrische Physik of Garching (Germany) in which, for the first time, we coupled it to a JET-X optics module with a focal length of 3.5 m and an angular resolution of 18 arcsec at 4.5 keV. This configuration was proposed in 2012 aboard the X-ray Imaging Polarimetry Explorer (XIPE) in response to the ESA call for a small mission. We derived the imaging and polarimetric performance for extended sources like Pulsar Wind Nebulae and Supernova Remnants as case studies for the XIPE configuration, discussing also possible improvements by coupling the detector with advanced optics, having finer angular resolution and larger effective area, to study with more details extended objects.Comment: Accepted for publication in The Astrophysical Journal Supplemen

    Detector Control System of the ATLAS Insertable B-Layer

    No full text
    soumis à publicationTo improve tracking robustness and precision of the ATLAS inner tracker an additional fourth pixel layer is foreseen, called Insertable B-Layer (IBL). It will be installed between the innermost present Pixel layer and a new smaller beam pipe and is presently under construction. As, once installed into the experiment, no access is available, a highly reliable control system is required. It has to supply the detector with all entities required for operation and protect it at all times. Design constraints are the high power density inside the detector volume, the sensitivity of the sensors against heatups, and the protection of the front end electronics against transients. We present the architecture of the control system with an emphasis on the CO2 cooling system, the power supply system and protection strategies. As we aim for a common operation of pixel and IBL detector, the integration of the IBL control system into the Pixel one will be discussed as well
    • …
    corecore