98 research outputs found

    A humanized mouse model for sequestration of Plasmodium falciparum sexual stages and in vivo evaluation of gametocytidal drugs

    Get PDF
    The development of new drugs to disrupt malaria transmission requires the establishment of an in vivo model to address the biology of Plasmodium falciparum sexual stages (gametocytes). Herein we show that chemically immune-modulated NSG mice grafted with human erythrocytes support complete sexual development of P. falciparum parasites and generate high gametocytemia. Immunohistochemistry and RT-qPCR analyses indicate an enrichment of immature gametocytes in the bone marrow and the spleen, suggesting a sequestration mechanism reminiscent to that observed in humans. Upon primaquine treatment, elimination of gametocytes from peripheral blood and from sequestration sites was observed, providing a proof of concept that these mice can be used for testing drugs. Therefore, this model allows the investigation of P. falciparum sexual commitment, gametocyte interactions with the bone marrow and spleen and provides the missing link between current in vitro assays and Phase I trials in humans for testing new malaria gametocytidal drugs

    Dynamics of Afebrile Plasmodium falciparum Infections in Mozambican Men

    Get PDF
    Background: Afebrile Plasmodium falciparum infections usually remain undetected and untreated in the community and could potentially contribute to sustaining local malaria transmission in areas aiming for malaria elimination. Methods: Thirty-two men with afebrile P. falciparum infections detected with rapid diagnostic test (RDTs) were followed for 28 days. Kaplan-Meier estimates were computed to estimate probability of parasite positivity and of reducing parasitaemia by half of its initial level by day 28. Trends of parasite densities quantified by microscopy and qPCR were assessed using Poisson regression models, and the microscopy to qPCR positivity ratio was calculated at each time point. Three survival distributions (Gompertz, Weibull, and gamma) were used to evaluate their strength of fit to the data and to predict the median lifetime of infection. Results: The cumulative probability of parasite qPCR positivity by day 28 was 81% (95% CI 60.2-91.6). Geometric mean parasitemia at recruitment was 516.1 parasites/muL and fell to <100 parasites/muL by day 3, reaching 56.7 parasites/muL on day 28 (p-value<0.001). The ratio of P. falciparum positive samples by microscopy to qPCR decreased from 0.9 to 0.52 from recruitment to day 28. The best model fit to the data was obtained assuming a Gompertz distribution. Conclusions: Afebrile P.falciparum infections detectable by RDT in semi-immune adults fall and stabilize at low-density levels during the first four days since detection, suggesting a rapid decline of potential transmissibility in this hidden parasite reservoir

    Molecular surveillance of pfhrp2 and pfhrp3 deletions in Plasmodium falciparum isolates from Mozambique

    Get PDF
    BACKGROUND: Malaria programmes use Plasmodium falciparum histidine-rich protein-2 (PfHRP2) based rapid diagnostic tests (RDTs) for malaria diagnosis. The deletion of this target antigen could potentially lead to misdiagnosis, delayed treatment and continuation of active transmission. METHODS: Plasmodium falciparum isolates (n = 1162) collected in Southern Mozambique were assessed by RDTs, microscopy and/or 18SrRNA qPCR. pfhrp2 and pfhrp3 deletions were investigated in isolates from individuals who were negative by RDT but positive by microscopy and/or qPCR (n = 69) using gene-specific PCRs, with kelch13 PCR as the parasite DNA control. RESULTS: Lack of pfhrp2 PCR amplification was observed in one of the 69 isolates subjected to molecular analysis [1.45% (95% CI 0.3-7.8%)]. CONCLUSIONS: The low prevalence of pfhrp2 deletions suggests that RDTs will detect the vast majority of the P. falciparum infections. Nevertheless, active surveillance for changing deletion frequencies is required

    Changing plasma cytokine, chemokine and growth factor profiles upon differing malaria transmission intensities

    Get PDF
    Background: Malaria epidemiological and immunological data suggest that parasite tolerance wanes in the absence of continuous exposure to the parasite, potentially enhancing pathogenesis. The expansion of control interventions and elimination campaigns raises the necessity to better understand the host factors leading to susceptibility or tolerance that are afected by rapid changes in malaria transmission intensity (MTI). Mediators of cellular immune responses are responsible for the symptoms and pathological alterations during disease and are expected to change rapidly upon malaria exposure or cessation. Methods: The plasma concentrations of 30 cytokine, chemokine and growth factors in individuals of all ages from a malaria endemic area of southern Mozambique were compared between 2 years of diferent MTI: 2010 (lower, n=234) and 2013 (higher, n=143). The efect of the year on the correlations between cytokines, chemokines and growth factors and IgGs to Plasmodium falciparum (markers of exposure) was explored. The efects of age, sex, neighbourhood and parasitaemia on analyte levels and their interactions with year were also assessed. Results: An inverse correlation of several cellular immune mediators with malarial antibodies in 2013, and a lack of correlation or even a positive correlation in 2010 were observed. Most cytokines, chemokines and growth factors, regardless of their immune function, had higher concentrations in 2010 compared with 2013 in P. falciparum-infected and uninfected subjects. Age and neighbourhood showed an efect on analyte concentrations. Conclusions: The results show a diferent regulation of the cellular immune response in 2010 vs 2013 which could be related to a loss of immune-tolerance after a decline in MTI in 2010 and previous years, and a rapid re-establishment of tolerance as a consequence of more continuous exposure as MTI began increasing in 2012. Cellular immune mediators warrant further investigation as possible surrogates of MTI-associated host susceptibility or tolerance

    Placental Infection With Plasmodium vivax: A Histopathological and Molecular Study

    Get PDF
    Background. Evidence of the presence of Plasmodium vivax in the placenta is scarce and inconclusive. This information is relevant to understanding whether P. vivax affects placental function and how it may contribute to poor pregnancy outcomes. Methods. Histopathologic examination of placental biopsies from 80 Papua New Guinean pregnant women was combined with quantitative polymerase chain reaction (qPCR) to confirm P. vivax infection and rule out coinfection with other Plasmodium species in placental and peripheral blood. Leukocytes and monocytes/macrophages were detected in placental sections by immunohistochemistry. Results. Monoinfection by P. vivax and Plasmodium falciparum was detected by qPCR in 8 and 10 placentas, respectively. Seven of the 8 women with P. vivax placental monoinfection were negative in peripheral blood. By histology, 3 placentas with P. vivax monoinfection showed parasitized erythrocytes in the intervillous space but no hemozoin in macrophages nor increased intervillous inflammatory cells. In contrast, 7 placentas positive for P. falciparum presented parasites and hemozoin in macrophages or fibrin as well as intervillous inflammatory infiltrates. Conclusions. Plasmodium vivax can be associated with placental infection. However, placental inflammation is not observed in P. vivax monoinfections, suggesting other causes of poor delivery outcomes associated with P. vivax infectio

    Adaptation of targeted nanocarriers to changing requirements in antimalarial drug delivery.

    Get PDF
    The adaptation of existing antimalarial nanocarriers to new Plasmodium stages, drugs, targeting molecules, or encapsulating structures is a strategy that can provide new nanotechnology-based, cost-efficient therapies against malaria. We have explored the modification of different liposome prototypes that had been developed in our group for the targeted delivery of antimalarial drugs to Plasmodium-infected red blood cells (pRBCs). These new models include: (i) immunoliposome-mediated release of new lipid-based antimalarials; (ii) liposomes targeted to pRBCs with covalently linked heparin to reduce anticoagulation risks; (iii) adaptation of heparin to pRBC targeting of chitosan nanoparticles; (iv) use of heparin for the targeting of Plasmodium stages in the mosquito vector; and (v) use of the non-anticoagulant glycosaminoglycan chondroitin 4-sulfate as a heparin surrogate for pRBC targeting. The results presented indicate that the tuning of existing nanovessels to new malaria-related targets is a valid low-cost alternative to the de novo development of targeted nanosystems

    Adaptation of targeted nanocarriers to changing requirements in antimalarial drug delivery

    Get PDF
    The adaptation of existing antimalarial nanocarriers to new Plasmodium stages, drugs, targeting molecules, or encapsulating structures is a strategy that can provide new nanotechnology-based, cost-efficient therapies against malaria. We have explored the modification of different liposome prototypes that had been developed in our group for the targeted delivery of antimalarial drugs to Plasmodium-infected red blood cells (pRBCs). These new models include: (i) immunoliposome-mediated release of new lipid-based antimalarials; (ii) liposomes targeted to pRBCs with covalently linked heparin to reduce anticoagulation risks; (iii) adaptation of heparin to pRBC targeting of chitosan nanoparticles; (iv) use of heparin for the targeting of Plasmodium stages in the mosquito vector; and (v) use of the non-anticoagulant glycosaminoglycan chondroitin 4-sulfate as a heparin surrogate for pRBC targeting. The results presented indicate that the tuning of existing nanovessels to new malaria-related targets is a valid low-cost alternative to the de novo development of targeted nanosystems

    Association of Maternal Factors and HIV Infection With Innate Cytokine Responses of Delivering Mothers and Newborns in Mozambique

    Get PDF
    Maternal factors and exposure to pathogens have an impact on infant health. For instance, HIV exposed but uninfected infants have higher morbidity and mortality than HIV unexposed infants. Innate responses are the first line of defense and orchestrate the subsequent adaptive immune response and are especially relevant in newborns. To determine the association of maternal HIV infection with maternal and newborn innate immunity we analyzed the cytokine responses upon pattern recognition receptor (PRR) stimulations in the triad of maternal peripheral and placental blood as well as in cord blood in a cohort of mother-infant pairs from southern Mozambique. A total of 48 women (35 HIV-uninfected and 13 HIV-infected) were included. Women and infant innate responses positively correlated with each other. Age, gravidity and sex of the fetus had some associations with spontaneous production of cytokines in the maternal peripheral blood. HIV-infected women not receiving antiretroviral therapy (ART) before pregnancy showed decreased IL-8 and IL-6 PRR responses in peripheral blood compared to those HIV-uninfected, and PRR hyporesponsiveness for IL-8 was also found in the corresponding infant's cord blood. HIV infection had a greater impact on placental blood responses, with significantly increased pro-inflammatory, T H 1 and T H 17 PRR responses in HIV-infected women not receiving ART before pregnancy compared to HIV-uninfected women. In conclusion, innate response of the mother and her newborn was altered by HIV infection in the women who did not receive ART before pregnancy. As these responses could be related to birth outcomes, targeted innate immune modulation could improve maternal and newborn health

    Host age and expression of genes involved in red blood cell invasion in Plasmodium falciparum field isolates

    Get PDF
    Plasmodium falciparum proteins involved in erythrocyte invasion are main targets of acquired immunity and important vaccine candidates. We hypothesized that anti-parasite immunity acquired upon exposure would limit invasion-related gene (IRG) expression and affect the clinical impact of the infection. 11 IRG transcript levels were measured in P. falciparum isolates by RT-PCR, and IgG/IgM against invasion ligands by Luminex(R), in 50 Mozambican adults, 25 children with severe malaria (SM) and 25 with uncomplicated malaria (UM). IRG expression differences among groups and associations between IRG expression and clinical/immunologic parameters were assessed. IRG expression diversity was higher in parasites infecting children than adults (p = 0.022). eba140 and ptramp expression decreased with age (p = 0.003 and 0.007, respectively) whereas p41 expression increased (p = 0.022). pfrh5 reduction in expression was abrupt early in life. Parasite density decreased with increasing pfrh5 expression (p < 0.001) and, only in children, parasite density increased with p41 expression (p = 0.007), and decreased with eba175 (p = 0.013). Antibody responses and IRG expression were not associated. In conclusion, IRG expression is associated with age and parasite density, but not with specific antibody responses in the acute phase of infection. Our results confirm the importance of multi-antigen vaccines development to avoid parasite immune escape when tested in malaria-exposed individuals
    corecore