119 research outputs found

    Acoustic insights into the zooplankton dynamics of the eastern Weddell Sea

    Get PDF
    The success of any efforts to determine the effects of climate change on marine ecosystems depends on understanding in the first instance the natural variations, which contemporarily occur on the interannual and shorter time scales. Here we present results on the environmental controls of zooplankton distribution patterns and behaviour in the eastern Weddell Sea, Southern Ocean. Zooplankton abundance and vertical migration are derived from the mean volume backscattering strength (MVBS) and the vertical velocity measured by moored acoustic Doppler current profilers (ADCPs), which were deployed simultaneously at 64°S, 66.5°S and 69°S along the Greenwich Meridian from February, 2005, until March, 2008. While these time series span a period of full three years they resolve hourly changes. A highly persistent behavioural pattern found at all three mooring locations is the synchronous diel vertical migration (DVM) of two distinct groups of zooplankton that migrate between a deep residence depth during daytime and a shallow depth during nighttime. The DVM was closely coupled to the astronomical daylight cycles. However, while the DVM was symmetric around local noon, the annual modulation of the DVM was clearly asymmetric around winter solstice or summer solstice, respectively, at all three mooring sites. DVM at our observation sites persisted throughout winter, even at the highest latitude exposed to the polar night. Since the magnitude as well as the relative rate of change of illumination is minimal at this time, we propose that the ultimate causes of DVM separated from the light-mediated proximal cue that coordinates it. In all three years, a marked change in the migration behaviour occurred in late spring (late October/early November), when DVM ceased. The complete suspension of DVM after early November is possibly caused by the combination of two factors: (1) increased availability of food in the surface mixed layer provided by the phytoplankton spring bloom, and (2) vanishing diurnal enhancement of the threat from visually oriented predators when the illumination is quasi-continuous during the polar and subpolar summer. Zooplankton abundance in the water column, estimated as the mean MVBS in the depth range 50–300 m, was highest end of summer and lowest mid to end winter on the average annual cycle. However, zooplankton abundance varied several-fold between years and between locations. Based on satellite and in situ data of chlorophyll and sea ice as well as on hydrographic measurements, the interannual and spatial variations of zooplankton mean abundance can be explained by differences in the magnitude of the phytoplankton spring bloom, which develops during the seasonal sea ice retreat. Whereas the vernal ice melt appears necessary to stimulate the blooming of phytoplankton, it is not the determinator of the blooms magnitude, its areal extent and duration. A possible explanation for the limitation of the phytoplankton bloom in some years is top-down control. We hypothesise that the phytoplankton spring development can be curbed by grazing when the zooplankton had attained high abundance by growth during the preceding summer

    Meridional and interannual variations of the seasonally modulated Zooplankton diel vertical migration in the Lazarev Sea and their possible physical-biological controls

    Get PDF
    Acoustic Doppler current profilers (ADCPs) not only take measurements of the water velocity components but also of the backscatter strength, which can be used to infer distribution patterns of zooplankton and small nekton. Here we present results obtained from ADCPs that were moored at 64°S, 66.5°S and 69°S along the Greenwich Meridian during the three-years period February 2005 until March 2008. A diel vertical migration (DVM) pattern – downward at dawn and upward at dusk - of two distinct groups of migrators persisted during most part of the years at all moorings sites, closely related to the astronomical daylight cycles. While the DVM was symmetric around local noon, the annual modulation of the DVM was asymmetric relative to the summer/winter solstices at the three mooring sites. This annual asymmetry resulted from a change in the migration behaviour that occurred in late spring (October - November), when the DVM ceases for around three months. In contrast to many previous studies in other regions, DVM at our observation sites persisted throughout winter, even at the highest latitude during the polar night. Using in-situ physical and biological data collected during deployment and recovery of the moorings, ice-thickness time series measured by Upward Looking Sonars, and satellite maps of remotely sensed sea ice coverage and surface chlorophyll concentration we can explain part of the seasonal to interannual variations in the inferred zooplankton distribution patterns by environmental cues. For a more complete explanation of the observed organisms’ behaviour, however, we hypothesize controls by internal drivers that need also be taken into account

    Fin whale (Balaenoptera physalus) acoustic presence off Elephant Island (South Shetland Islands), Antarctica

    Get PDF
    Summertime visual observations suggest that the region around Elephant Island may serve as an important feeding area for fin whales. To explore its year-round relevance, passive acoustic recordings collected northwest of Elephant Island (61°0.88’S, 55°58.53’W) from January 2013 to February 2016 were analysed for seasonal and diel patterns of fin whale 20 Hz calls. Calls were detected year-round, although in some years calls were not present during all months. For all years, fin whale calls were consistently present from March to July for more than 90% of days per month. From August to January, percentage of days with calls varied between years, with presence exceeding 75% of days per month throughout 2014, whereas in 2015 calls were absent in October and November. In 2013, fin whale calling dropped in August and increased again towards October and November. Quantitative analyses of power spectral density for the 20-Hz and 89-Hz fin whale bands, showed that fin whale acoustic power in both frequency bands followed a Gaussian-like temporal pattern, increasing in late January, peaking during April-May and decreasing in late August for all years. A second shoulder peak in PSD seemed to occur during the second part of July showing strongest for the upper fin whale band, followed by a rapid decrease, after which SNR for both bands dropped to zero. Diel patterns in call activity were analysed for a 10-month subset of the data from 2013. Fluctuations in call rates did not follow a diel pattern nor correspond to local insolation. The observed peaks in fin whale call activity correspond to the periods during which fin whale super groups have been observed visually in this region. Our year-round acoustic analysis indicates that the Elephant Island region likely carries an important role for fin whales throughout the entire year

    Operating Cabled Underwater Observatories in Rough Shelf-Sea Environments:A Technological Challenge

    Get PDF
    Cabled coastal observatories are often seen as future-oriented marine technology that enables science to conduct observational and experimental studies under water year-round, independent of physical accessibility to the target area. Additionally, the availability of (unrestricted) electricity and an Internet connection under water allows the operation of complex experimental setups and sensor systems for longer periods of time, thus creating a kind of laboratory beneath the water. After successful operation for several decades in the terrestrial and atmospheric research field, remote controlled observatory technology finally also enables marine scientists to take advantage of the rapidly developing communication technology. The continuous operation of two cabled observatories in the southern North Sea and off the Svalbard coast since 2012 shows that even highly complex sensor systems, such as stereo-optical cameras, video plankton recorders or systems for measuring the marine carbonate system, can be successfully operated remotely year-round facilitating continuous scientific access to areas that are difficult to reach, such as the polar seas or the North Sea. Experience also shows, however, that the challenges of operating a cabled coastal observatory go far beyond the provision of electricity and network connection under water. In this manuscript, the essential developmental stages of the "COSYNA Shallow Water Underwater Node" system are presented, and the difficulties and solutions that have arisen in the course of operation since 2012 are addressed with regard to technical, organizational and scientific aspects.</p

    From pole to pole : 33 years of physical oceanography onboard R/V Polarstern

    Get PDF
    Measuring temperature and salinity profiles in the world's oceans is crucial to understanding ocean dynamics and its influence on the heat budget, the water cycle, the marine environment and on our climate. Since 1983 the German research vessel and icebreaker Polarstern has been the platform of numerous CTD (conductivity, temperature, depth instrument) deployments in the Arctic and the Antarctic. We report on a unique data collection spanning 33 years of polar CTD data. In total 131 data sets (1 data set per cruise leg) containing data from 10 063 CTD casts are now freely available at doi: 10.1594/PANGAEA.860066. During this long period five CTD types with different characteristics and accuracies have been used. Therefore the instruments and processing procedures (sensor calibration, data validation, etc.) are described in detail. This compilation is special not only with regard to the quantity but also the quality of the data -the latter indicated for each data set using defined quality codes. The complete data collection includes a number of repeated sections for which the quality code can be used to investigate and evaluate long-term changes. Beginning with 2010, the salinity measurements presented here are of the highest quality possible in this field owing to the introduction of the OPTIMARE Precision Salinometer.Peer reviewe

    Circulation and transport of water masses in the Lazarev Sea, Antarctica, during summer and winter 2006

    Get PDF
    The distribution and circulation of water masses in the region between 6°W and 3°E and between the Antarctic continental shelf and 60°S are analyzed using hydrographic and shipboard acoustic Doppler current profiler (ADCP) data taken during austral summer 2005/2006 and austral winter 2006. In bothseasons two gateways are apparent where Warm Deep Water (WDW) and other water masses enter the Weddell Gyre through the Lazarev Sea: (a) a probably topographically trapped westward, then southwestward circulation around the northwestern edge of Maud Rise with maximum velocities ofabout 20 cm s-1 and (b) the Antarctic Coastal Current (AntCC), which is confined to the Antarctic continental shelf slope and is associated with maximum velocities of about 25 cm s-1.Along two meridional sections that run close to the top of Maud Rise along 3°E, geostrophic velocity shears were calculated from CTD measurements and referenced to velocity profiles recorded by an ADCP in the upper 300 m. The mean accuracy of the absolute geostrophic velocity is estimated at +/-2 cm s-1.The net baroclinic transport across the 3°E section amounts to 20 and 17 Sv westward for the summer and winter season, respectively. The majority of the baroclinic transport, which accounts for ~60% of the total baroclinic transport during both surveys, occurs north of Maud Rise between 65° and 60°S.However, the comparison between geostrophic estimates and direct velocity measurements shows that the circulation within the study area has a strong barotropic component, so that calculations based on the dynamic method underestimate the transport considerably. Estimation of the net absolute volume transports across 3°E suggests a westward flow of 23.9 +/- 19.9 Sv in austral summer and 93.6 +/- 20.1 Sv in austral winter. Part of this large seasonal transport variation can be explained by differences in the gyre-scaleforcing through wind stress curl

    Documentation of ADCP data

    Get PDF
    corecore