17 research outputs found

    Notulae to the Italian flora of algae, bryophytes, fungi and lichens: 12

    Get PDF
    In this contribution, new data concerning bryophytes, fungi and lichens of the Italian flora are presented. It includes new records, confirmations or exclusions for the bryophyte genera Acaulon, Campylopus, Entosthodon, Homomallium, Pseudohygrohypnum, and Thuidium, the fungal genera Entoloma, Cortinarius, Mycenella, Oxyporus, and Psathyrella and the lichen genera Anaptychia, Athallia, Baeomyces, Bagliettoa, Calicium, Nephroma, Pectenia, Phaeophyscia, Polyblastia, Protoparmeliopsis, Pyrenula, Ramalina, and Sanguineodiscus

    Effects of liraglutide vs. lifestyle changes on soluble suppression of tumorigenesis-2 (sST2) and galectin-3 in obese subjects with prediabetes or type 2 diabetes after comparable weight loss

    No full text
    Background Soluble suppression of tumorigenesis-2 (sST2) and galectin (Gal)-3 are two biomarkers related to inflammation, metabolic disturbances and to myocardial fibrosis that characterize several cardiac pathological conditions. Increased circulating levels of these molecules have been associated with risk of cardiovascular death. Treatment with liraglutide, a glucagon-like peptide 1 analog, is associated with weight loss, improved glycemic control, and reduced cardiovascular risk. We wanted to assess (I) potential differences between subjects with prediabetes or type 2 diabetes mellitus (T2DM) and healthy controls in sST2 and Gal-3 circulating levels, and their relationship with glycemic control and markers of beta cell function and myocardial injury; (II) whether liraglutide treatment modulates these markers in subjects with prediabetes or early T2DM independently of weight loss; (III) whether baseline levels of any of these two molecules may predict the response to liraglutide treatment. Methods Forty metformin-treated obese subjects (BMI ≥ 30) with prediabetes [impaired fasting glucose (IFG) or impaired glucose tolerance (IGT) or both (n = 23)] or newly diagnosed T2DM (n = 17), were randomized to liraglutide or lifestyle counseling until achieving a comparable weight loss (7% of initial body weight). Thirteen subjects were enrolled as healthy controls for baseline sST2 and Gal-3 levels. Results Baseline sST2 levels were comparable between controls and obese patients (p = 0.79) whereas Gal-3 levels were significantly higher in patients as compared to controls (p < 0.001). Liraglutide treatment, but not weight loss achieved by lifestyle counseling, decreased plasma sST2 levels (− 9%, beta = − 14.9, standard deviation 6.9, p = 0.037) while Gal-3 levels did not change. A reduction in serum hs-Troponin I was observed after intervention, due to a 19% (p = 0.29) increase in the lifestyle arm, and a 25% decrease (p = 0.033) in the liraglutide arm (between-group difference p = 0.083). Lower baseline Gal-3 levels predicted a better improvement in beta cell function after liraglutide treatment. Conclusions Liraglutide-induced reduction in sST2 and possibly hs-TnI suggests that in obese patients with prediabetes or early T2DM this drug may have a positive effect on (cardiac) fibrosis, whereas plasma level of Gal-3 before liraglutide initiation may predict response to the drug in terms of beta cell function improvement. Trial registration Eudract: 2013-001356-3

    HCV Genotypes Are Differently Prone to the Development of Resistance to Linear and Macrocyclic Protease Inhibitors

    Get PDF
    <div><h3>Background</h3><p>Because of the extreme genetic variability of hepatitis C virus (HCV), we analyzed whether specific HCV-genotypes are differently prone to develop resistance to linear and macrocyclic protease-inhibitors (PIs).</p> <h3>Methods</h3><p>The study includes 1568 NS3-protease sequences, isolated from PI-naive patients infected with HCV-genotypes 1a (N = 621), 1b (N = 474), 2 (N = 72), 3 (N = 268), 4 (N = 54) 5 (N = 6), and 6 (N = 73). Genetic-barrier was calculated as the sum of nucleotide-transitions (score = 1) and/or nucleotide-transversions (score = 2.5) required for drug-resistance-mutations emergence. Forty-three mutations associated with PIs-resistance were analyzed (36A/M/L/G-41R-43S/V-54A/S/V-55A-Q80K/R/L/H/G-109K-138T-155K/Q/T/I/M/S/G/L-156T/V/G/S-158I-168A/H/T/V/E/I/G/N/Y-170A/T-175L). Structural analyses on NS3-protease and on putative RNA-models have been also performed.</p> <h3>Results</h3><p>Overall, NS3-protease was moderately conserved, with 85/181 (47.0%) amino-acids showing <1% variability. The catalytic-triad (H57-D81-S139) and 6/13 resistance-associated positions (Q41-F43-R109-R155-A156-V158) were fully conserved (variability <u><</u>1%). Structural-analysis highlighted that most of the NS3-residues involved in drug-stabilization were highly conserved, while 7 PI-resistance residues, together with selected residues located in proximity of the PI-binding pocket, were highly variable among HCV-genotypes. Four resistance-mutations (80K/G-36L-175L) were found as natural polymorphisms in selected genotypes (80K present in 41.6% HCV-1a, 100% of HCV-5 and 20.6% HCV-6; 80G present in 94.4% HCV-2; 36L present in 100% HCV-3-5 and >94% HCV-2-4; 175L present in 100% HCV-1a-3-5 and >97% HCV-2-4). Furthermore, HCV-3 specifically showed non-conservative polymorphisms (R123T-D168Q) at two drug-interacting positions. Regardless of HCV-genotype, 13 PIs resistance-mutations were associated with low genetic-barrier, requiring only 1 nucleotide-substitution (41R-43S/V-54A-55A-80R-156V/T: score = 1; 54S-138T-156S/G-168E/H: score = 2.5). By contrast, by using HCV-1b as reference genotype, nucleotide-heterogeneity led to a lower genetic-barrier for the development of some drug-resistance-mutations in HCV-1a (36M-155G/I/K/M/S/T-170T), HCV-2 (36M-80K-155G/I/K/S/T-170T), HCV-3 (155G/I/K/M/S/T-170T), HCV-4-6 (155I/S/L), and HCV-5 (80G-155G/I/K/M/S/T).</p> <h3>Conclusions</h3><p>The high degree of HCV genetic variability makes HCV-genotypes, and even subtypes, differently prone to the development of PIs resistance-mutations. Overall, this can account for different responsiveness of HCV-genotypes to PIs, with important clinical implications in tailoring individualized and appropriate regimens.</p> </div

    Quantification of intrahepatic total HBV DNA in liver biopsies of HBV-infected patients by a modified version of COBAS (R) Ampliprep/COBAS (R) TaqMan HBV test v2.0

    No full text
    Intrahepatic total HBV DNA (it-HBV DNA) level might reflect the size of virus reservoir and correlate with the histological status of the liver. To quantitate it-HBV DNA in a series of 70 liver biopsies obtained from hepatitis B chronic patients, a modified version of the COBAS\uaeAmpliprep/COBAS\uaeTaqMan HBV test v2.0 was used for this purpose. The linearity and reproducibility of the modified protocol was tested by quantifying serial dilutions of a full-length HBV containing plasmid and it-HBV DNA from a reference patient. A good linear trend between the expected values and those generated by the assay was observed at different concentrations of both plasmid and reference patient (R 2 = 0.994 and 0.962, respectively). Differences between the values obtained in two independent runs were 640.3 log IU for the plasmid and 640.6 log IU/mg for the reference patient, showing a high inter-run reproducibility. In the 70 liver biopsies, it-HBV DNA level ranged from 1.4 to 5.4 log IU/mg, with a good linearity and reproducibility between the values obtained in two runs [R 2 = 0.981; median (IQR) difference of it-HBV DNA 0.05 (0.02-0.09) IU/mg]. The modified COBAS\uaeAmpliprep/COBAS\uaeTaqMan HBV test v2.0 allows an accurate quantitation of it-HBV DNA. Its determination may have prognostic value and may be a useful tool for the new therapeutic strategies aimed at eradicating the HBV infection

    Conservation of HCV NS3 protease from PI-naïve HCV infected patients.

    No full text
    <p>Panel (<b>A</b>) reports the molecular surface structure of HCV-1b NS3-protease, colored according to the frequency rate of mutations observed in all 1568 HCV-sequences. The catalytic-triad and residues located inside and in proximity of the hydrophobic-core of the NS3-protease are reported. Panels (<b>B</b>) and (<b>C</b>) show a co-crystalized boceprevir-HCV-1a protease structure, colored according to the amino acid conservation observed in all HCV-sequences.</p
    corecore