62 research outputs found

    Neuroprotective potential of the Amazonian fruits Euterpe oleracea Mart. and Paullinia cupana Kunth

    Get PDF
    Acai (Euterpe oleracea Mart.) and guarana (Paullinia cupana Kunth) are native species from the Amazon Forest that in folk medicine are used to treat several diseases due to their anti-inflammatory and antioxidant properties. This review brings together findings from different studies on the potential neuroprotective effects of acai and guarana, highlighting the importance of the conservation and sustainable exploitation of the Amazon Forest. A bibliographic survey in the PubMed database retrieved indexed articles written in English that focused on the effects of acai and guarana in in vitro and in vivo models of neurodegenerative diseases. In general, treatment with either acai or guarana decreased neuroinflammation, increased antioxidant responses, ameliorated depression, and protected cells from neurotoxicity mediated by aggregated proteins. The results from these studies suggest that flavonoids, anthocyanins, and carotenoids found in both acai and guarana have therapeutic potential not only for neurodegenerative diseases, but also for depressive disorders. In addition, acai and guarana show beneficial effects in slowing down the physiological aging process. However, toxicity and efficacy studies are still needed to guide the formulation of herbal medicines from acai and guarana

    Differential Regulation of GABABReceptor Trafficking by Different Modes ofN-methyl-d-aspartate (NMDA) Receptor Signaling

    Get PDF
    Inhibitory GABAB receptors (GABABRs) can down-regulate most excitatory synapses in the CNS by reducing postsynaptic excitability. Functional GABABRs are heterodimers of GABAB1 and GABAB2 subunits and here we show that the trafficking and surface expression of GABABRs is differentially regulated by synaptic or pathophysiological activation of NMDA receptors (NMDARs). Activation of synaptic NMDARs using a chemLTP protocol increases GABABR recycling and surface expression. In contrast, excitotoxic global activation of synaptic and extrasynaptic NMDARs by bath application of NMDA causes the loss of surface GABABRs. Intriguingly, exposing neurons to extreme metabolic stress using oxygen/glucose deprivation (OGD) increases GABAB1 but decreases GABAB2 surface expression. The increase in surface GABAB1 involves enhanced recycling and is blocked by the NMDAR antagonist AP5. The decrease in surface GABAB2 is also blocked by AP5 and by inhibiting degradation pathways. These results indicate that NMDAR activity is critical in GABABR trafficking and function and that the individual subunits can be separately controlled to regulate neuronal responsiveness and survival
    • …
    corecore