151 research outputs found

    Ventilator-Associated Pneumonia and PaO2/FIO2 Diagnostic Accuracy: Changing the Paradigm?

    Get PDF
    BACKGROUND: Ventilator-associated pneumonia (VAP) is associated to longer stay and poor outcomes. Lacking definitive diagnostic criteria, worsening gas exchange assessed by PaO2/FIO2 ≀ 240 in mmHg has been proposed as one of the diagnostic criteria for VAP. We aim to assess the adequacy of PaO2/FIO2 ≀ 240 to diagnose VAP. METHODS: Prospective observational study in 255 consecutive patients with suspected VAP, clustered according to PaO2/FIO2 ≀ 240 vs. > 240 at pneumonia onset. The primary analysis was the association between PaO2/FIO2 ≀ 240 and quantitative microbiologic confirmation of pneumonia, the most reliable diagnostic gold-standard. RESULTS: Mean PaO2/FIO2 at VAP onset was 195 Β± 82; 171 (67%) cases had PaO2/FIO2 ≀ 240. Patients with PaO2/FIO2 ≀ 240 had a lower APACHE-II score at ICU admission; however, at pneumonia onset they had higher CPIS, SOFA score, acute respiratory distress syndrome criteria and incidence of shock, and less microbiological confirmation of pneumonia (117, 69% vs. 71, 85%, p = 0.008), compared to patients with PaO2/FIO2 > 240. In multivariate logistic regression, PaO2/FIO2 ≀ 240 was independently associated with less microbiological confirmation (adjusted odds-ratio 0.37, 95% confidence interval 0.15-0.89, p = 0.027). The association between PaO2/FIO2 and microbiological confirmation of VAP was poor, with an area under the ROC curve 0.645. Initial non-response to treatment and length of stay were similar between both groups, while hospital mortality was higher in patients with PaO2/FIO2 ≀ 240. CONCLUSION: Adding PaO2/FIO2 ratio ≀ 240 to the clinical and radiographic criteria does not help in the diagnosis of VAP. PaO2/FIO2 ratio > 240 does not exclude this infection. Using this threshold may underestimate the incidence of VAP.info:eu-repo/semantics/publishedVersio

    Risk and Prognostic Factors in Very Old Patients with Sepsis Secondary to Community-Acquired Pneumonia

    Get PDF
    Background: Little is known about risk and prognostic factors in very old patients developing sepsis secondary to community-acquired pneumonia (CAP). Methods: We conducted a retrospective observational study of data prospectively collected at the Hospital Clinic of Barcelona over a 13-year period. Consecutive patients hospitalized with CAP were included if they were very old (β‰₯80 years) and divided into those with and without sepsis for comparison. Sepsis was diagnosed based on the Sepsis-3 criteria. The main clinical outcome was 30-day mortality. Results: Among the 4219 patients hospitalized with CAP during the study period, 1238 (29%) were very old. The prevalence of sepsis in this age group was 71%. Male sex, chronic renal disease, and diabetes mellitus were independent risk factors for sepsis, while antibiotic therapy before admission was independently associated with a lower risk of sepsis. Thirty-day and intensive care unit (ICU) mortality did not differ between patients with and without sepsis. In CAP-sepsis group, chronic renal disease and neurological disease were independent risk factors for 30-day mortality. Conclusion: In very old patients hospitalized with CAP, in-hospital and 1-year mortality rates were increased if they developed sepsis. Antibiotic therapy before hospital admission was associated with a lower risk of sepsis

    Viral Replication Rate Regulates Clinical Outcome and CD8 T Cell Responses during Highly Pathogenic H5N1 Influenza Virus Infection in Mice

    Get PDF
    Since the first recorded infection of humans with H5N1 viruses of avian origin in 1997, sporadic human infections continue to occur with a staggering mortality rate of >60%. Although sustained human-to-human transmission has not occurred yet, there is a growing concern that these H5N1 viruses might acquire this trait and raise the specter of a pandemic. Despite progress in deciphering viral determinants of pathogenicity, we still lack crucial information on virus/immune system interactions pertaining to severe disease and high mortality associated with human H5N1 influenza virus infections. Using two human isolates of H5N1 viruses that differ in their pathogenicity in mice, we have defined mechanistic links among the rate of viral replication, mortality, CD8 T cell responses, and immunopathology. The extreme pathogenicity of H5N1 viruses was directly linked to the ability of the virus to replicate rapidly, and swiftly attain high steady-state titers in the lungs within 48 hours after infection. The remarkably high replication rate of the highly pathogenic H5N1 virus did not prevent the induction of IFN-Ξ² or activation of CD8 T cells, but the CD8 T cell response was ineffective in controlling viral replication in the lungs and CD8 T cell deficiency did not affect viral titers or mortality. Additionally, BIM deficiency ameliorated lung pathology and inhibited T cell apoptosis without affecting survival of mice. Therefore, rapidly replicating, highly lethal H5N1 viruses could simply outpace and overwhelm the adaptive immune responses, and kill the host by direct cytopathic effects. However, therapeutic suppression of early viral replication and the associated enhancement of CD8 T cell responses improved the survival of mice following a lethal H5N1 infection. These findings suggest that suppression of early H5N1 virus replication is key to the programming of an effective host response, which has implications in treatment of this infection in humans

    Temporal Dynamics of Host Molecular Responses Differentiate Symptomatic and Asymptomatic Influenza A Infection

    Get PDF
    Exposure to influenza viruses is necessary, but not sufficient, for healthy human hosts to develop symptomatic illness. The host response is an important determinant of disease progression. In order to delineate host molecular responses that differentiate symptomatic and asymptomatic Influenza A infection, we inoculated 17 healthy adults with live influenza (H3N2/Wisconsin) and examined changes in host peripheral blood gene expression at 16 timepoints over 132 hours. Here we present distinct transcriptional dynamics of host responses unique to asymptomatic and symptomatic infections. We show that symptomatic hosts invoke, simultaneously, multiple pattern recognition receptors-mediated antiviral and inflammatory responses that may relate to virus-induced oxidative stress. In contrast, asymptomatic subjects tightly regulate these responses and exhibit elevated expression of genes that function in antioxidant responses and cell-mediated responses. We reveal an ab initio molecular signature that strongly correlates to symptomatic clinical disease and biomarkers whose expression patterns best discriminate early from late phases of infection. Our results establish a temporal pattern of host molecular responses that differentiates symptomatic from asymptomatic infections and reveals an asymptomatic host-unique non-passive response signature, suggesting novel putative molecular targets for both prognostic assessment and ameliorative therapeutic intervention in seasonal and pandemic influenza

    Ebola GP-Specific Monoclonal Antibodies Protect Mice and Guinea Pigs from Lethal Ebola Virus Infection

    Get PDF
    Ebola virus (EBOV) causes acute hemorrhagic fever in humans and non-human primates with mortality rates up to 90%. So far there are no effective treatments available. This study evaluates the protective efficacy of 8 monoclonal antibodies (MAbs) against Ebola glycoprotein in mice and guinea pigs. Immunocompetent mice or guinea pigs were given MAbs i.p. in various doses individually or as pools of 3–4 MAbs to test their protection against a lethal challenge with mouse- or guinea pig-adapted EBOV. Each of the 8 MAbs (100 Β΅g) protected mice from a lethal EBOV challenge when administered 1 day before or after challenge. Seven MAbs were effective 2 days post-infection (dpi), with 1 MAb demonstrating partial protection 3 dpi. In the guinea pigs each MAb showed partial protection at 1 dpi, however the mean time to death was significantly prolonged compared to the control group. Moreover, treatment with pools of 3–4 MAbs completely protected the majority of animals, while administration at 2–3 dpi achieved 50–100% protection. This data suggests that the MAbs generated are capable of protecting both animal species against lethal Ebola virus challenge. These results indicate that MAbs particularly when used as an oligoclonal set are a potential therapeutic for post-exposure treatment of EBOV infection

    Cross-Reactive T Cells Are Involved in Rapid Clearance of 2009 Pandemic H1N1 Influenza Virus in Nonhuman Primates

    Get PDF
    In mouse models of influenza, T cells can confer broad protection against multiple viral subtypes when antibodies raised against a single subtype fail to do so. However, the role of T cells in protecting humans against influenza remains unclear. Here we employ a translational nonhuman primate model to show that cross-reactive T cell responses play an important role in early clearance of infection with 2009 pandemic H1N1 influenza virus (H1N1pdm). To β€œprime” cellular immunity, we first infected 5 rhesus macaques with a seasonal human H1N1 isolate. These animals made detectable cellular and antibody responses against the seasonal H1N1 isolate but had no neutralizing antibodies against H1N1pdm. Four months later, we challenged the 5 β€œprimed” animals and 7 naive controls with H1N1pdm. In naive animals, CD8+ T cells with an activated phenotype (Ki-67+ CD38+) appeared in blood and lung 5–7 days post inoculation (p.i.) with H1N1pdm and reached peak magnitude 7–10 days p.i. In contrast, activated T cells were recruited to the lung as early as 2 days p.i. in β€œprimed” animals, and reached peak frequencies in blood and lung 4–7 days p.i. Interferon (IFN)-Ξ³ Elispot and intracellular cytokine staining assays showed that the virus-specific response peaked earlier and reached a higher magnitude in β€œprimed” animals than in naive animals. This response involved both CD4+ and CD8+ T cells. Strikingly, β€œprimed” animals cleared H1N1pdm infection significantly earlier from the upper and lower respiratory tract than the naive animals did, and before the appearance of H1N1pdm-specific neutralizing antibodies. Together, our results suggest that cross-reactive T cell responses can mediate early clearance of an antigenically novel influenza virus in primates. Vaccines capable of inducing such cross-reactive T cells may help protect humans against severe disease caused by newly emerging pandemic influenza viruses

    Large Scale Comparison of Innate Responses to Viral and Bacterial Pathogens in Mouse and Macaque

    Get PDF
    Viral and bacterial infections of the lower respiratory tract are major causes of morbidity and mortality worldwide. Alveolar macrophages line the alveolar spaces and are the first cells of the immune system to respond to invading pathogens. To determine the similarities and differences between the responses of mice and macaques to invading pathogens we profiled alveolar macrophages from these species following infection with two viral (PR8 and Fuj/02 influenza A) and two bacterial (Mycobacterium tuberculosis and Francisella tularensis Schu S4) pathogens. Cells were collected at 6 time points following each infection and expression profiles were compared across and between species. Our analyses identified a core set of genes, activated in both species and across all pathogens that were predominantly part of the interferon response pathway. In addition, we identified similarities across species in the way innate immune cells respond to lethal versus non-lethal pathogens. On the other hand we also found several species and pathogen specific response patterns. These results provide new insights into mechanisms by which the innate immune system responds to, and interacts with, invading pathogens

    Community-acquired pneumonia related to intracellular pathogens

    Get PDF
    Community-acquired pneumonia (CAP) is associated with high rates of morbidity and mortality worldwide; the annual incidence of CAP among adults in Europe has ranged from 1.5 to 1.7 per 1000 population. Intracellular bacteria are common causes of CAP. However, there is considerable variation in the reported incidence between countries and change over time. The intracellular pathogens that are well established as causes of pneumonia are Legionella pneumophila, Mycoplasma pneumoniae, Chlamydophila pneumoniae, Chlamydophila psittaci, and Coxiella burnetii. Since it is known that antibiotic treatment for severe CAP is empiric and includes coverage of typical and atypical pathogens, microbiological diagnosis bears an important relationship to prognosis of pneumonia. Factors such as adequacy of initial antibiotic or early de-escalation of therapy are important variables associated with outcomes, especially in severe cases. Intracellular pathogens sometimes appear to cause more severe disease with respiratory failure and multisystem dysfunction associated with fatal outcomes. The clinical relevance of intracellular pathogens in severe CAP has not been specifically investigated. We review the prevalence, general characteristics, and outcomes of severe CAP cases caused by intracellular pathogens

    Innate Immune Response of Human Alveolar Macrophages during Influenza A Infection

    Get PDF
    Alveolar macrophages (AM) are one of the key cell types for initiating inflammatory and immune responses to influenza virus in the lung. However, the genome-wide changes in response to influenza infection in AM have not been defined. We performed gene profiling of human AM in response to H1N1 influenza A virus PR/8 using Affymetrix HG-U133 Plus 2.0 chips and verified the changes at both mRNA and protein levels by real-time RT-PCR and ELISA. We confirmed the response with a contemporary H3N2 influenza virus A/New York/238/2005 (NY/238). To understand the local cellular response, we also evaluated the impact of paracrine factors on virus-induced chemokine and cytokine secretion. In addition, we investigated the changes in the expression of macrophage receptors and uptake of pathogens after PR/8 infection. Although macrophages fail to release a large amount of infectious virus, we observed a robust induction of type I and type III interferons and several cytokines and chemokines following influenza infection. CXCL9, 10, and 11 were the most highly induced chemokines by influenza infection. UV-inactivation abolished virus-induced cytokine and chemokine response, with the exception of CXCL10. The contemporary influenza virus NY/238 infection of AM induced a similar response as PR/8. Inhibition of TNF and/or IL-1Ξ² activity significantly decreased the secretion of the proinflammatory chemokines CCL5 and CXCL8 by over 50%. PR/8 infection also significantly decreased mRNA levels of macrophage receptors including C-type lectin domain family 7 member A (CLEC7A), macrophage scavenger receptor 1 (MSR1), and CD36, and reduced uptake of zymosan. In conclusion, influenza infection induced an extensive proinflammatory response in human AM. Targeting local components of innate immune response might provide a strategy for controlling influenza A infection-induced proinflammatory response in vivo

    Type I Interferon Signaling Regulates Ly6Chi Monocytes and Neutrophils during Acute Viral Pneumonia in Mice

    Get PDF
    Type I interferon (IFN-I) plays a critical role in the homeostasis of hematopoietic stem cells and influences neutrophil influx to the site of inflammation. IFN-I receptor knockout (Ifnar1βˆ’/βˆ’) mice develop significant defects in the infiltration of Ly6Chi monocytes in the lung after influenza infection (A/PR/8/34, H1N1). Ly6Chi monocytes of wild-type (WT) mice are the main producers of MCP-1 while the alternatively generated Ly6Cint monocytes of Ifnar1βˆ’/βˆ’ mice mainly produce KC for neutrophil influx. As a consequence, Ifnar1βˆ’/βˆ’ mice recruit more neutrophils after influenza infection than do WT mice. Treatment of IFNAR1 blocking antibody on the WT bone marrow (BM) cells in vitro failed to differentiate into Ly6Chi monocytes. By using BM chimeric mice (WT BM into Ifnar1βˆ’/βˆ’ and vice versa), we confirmed that IFN-I signaling in hematopoietic cells is required for the generation of Ly6Chi monocytes. Of note, WT BM reconstituted Ifnar1βˆ’/βˆ’ chimeric mice with increased numbers of Ly6Chi monocytes survived longer than influenza-infected Ifnar1βˆ’/βˆ’ mice. In contrast, WT mice that received Ifnar1βˆ’/βˆ’ BM cells with alternative Ly6Cint monocytes and increased numbers of neutrophils exhibited higher mortality rates than WT mice given WT BM cells. Collectively, these data suggest that IFN-I contributes to resistance of influenza infection by control of monocytes and neutrophils in the lung
    • …
    corecore