256 research outputs found
Femtosecond Covariance Spectroscopy
The success of non-linear optics relies largely on pulse-to-pulse
consistency. In contrast, covariance based techniques used in photoionization
electron spectroscopy and mass spectrometry have shown that wealth of
information can be extracted from noise that is lost when averaging multiple
measurements. Here, we apply covariance based detection to nonlinear optical
spectroscopy, and show that noise in a femtosecond laser is not necessarily a
liability to be mitigated, but can act as a unique and powerful asset. As a
proof of principle we apply this approach to the process of stimulated Raman
scattering in alpha-quartz. Our results demonstrate how nonlinear processes in
the sample can encode correlations between the spectral components of
ultrashort pulses with uncorrelated stochastic fluctuations. This in turn
provides richer information compared to the standard non-linear optics
techniques that are based on averages over many repetitions with well-behaved
laser pulses. These proof-of-principle results suggest that covariance based
nonlinear spectroscopy will improve the applicability of fs non-linear
spectroscopy in wavelength ranges where stable, transform limited pulses are
not available such as, for example, x-ray free electron lasers which naturally
have spectrally noisy pulses ideally suited for this approach
Ultrafast Optical Control of the Electronic Properties of
We report on the temperature dependence of the electronic
properties, studied at equilibrium and out of equilibrium, by means of time and
angle resolved photoelectron spectroscopy. Our results unveil the dependence of
the electronic band structure across the Fermi energy on the sample
temperature. This finding is regarded as the dominant mechanism responsible for
the anomalous resistivity observed at T* 160 K along with the change of
the charge carrier character from holelike to electronlike. Having addressed
these long-lasting questions, we prove the possibility to control, at the
ultrashort time scale, both the binding energy and the quasiparticle lifetime
of the valence band. These experimental evidences pave the way for optically
controlling the thermoelectric and magnetoelectric transport properties of
Strong enhancement of d-wave superconducting state in the three-band Hubbard model coupled to an apical oxygen phonon
We study the hole binding energy and pairing correlations in the three-band
Hubbard model coupled to an apical oxygen phonon, by exact diagonalization and
constrained-path Monte Carlo simulations. In the physically relevant
charge-transfer regime, we find that the hole binding energy is strongly
enhanced by the electron-phonon interaction, which is due to a novel
potential-energy-driven pairing mechanism involving reduction of both
electronic potential energy and phonon related energy. The enhancement of hole
binding energy, in combination with a phonon-induced increase of quasiparticle
weight, leads to a dramatic enhancement of the long-range part of d-wave
pairing correlations. Our results indicate that the apical oxygen phonon plays
a significant role in the superconductivity of high- cuprates.Comment: 5 pages, 5 figure
Thermo-mechanical behavior of surface acoustic waves in ordered arrays of nanodisks studied by near infrared pump-probe diffraction experiments
The ultrafast thermal and mechanical dynamics of a two-dimensional lattice of
metallic nano-disks has been studied by near infrared pump-probe diffraction
measurements, over a temporal range spanning from 100 fs to several
nanoseconds. The experiments demonstrate that, in these systems, a
two-dimensional surface acoustic wave (2DSAW), with a wavevector given by the
reciprocal periodicity of the array, can be excited by ~120 fs Ti:sapphire
laser pulses. In order to clarify the interaction between the nanodisks and the
substrate, numerical calculations of the elastic eigenmodes and simulations of
the thermodynamics of the system are developed through finite-element analysis.
At this light, we unambiguously show that the observed 2DSAW velocity shift
originates from the mechanical interaction between the 2DSAWs and the
nano-disks, while the correlated 2DSAW damping is due to the energy radiation
into the substrate.Comment: 13 pages, 10 figure
The momentum and photon energy dependence of the circular dichroic photoemission in the bulk Rashba semiconductors BiTeX (X = I, Br, Cl)
Bulk Rashba systems BiTeX (X = I, Br, Cl) are emerging as important
candidates for developing spintronics devices, because of the coexistence of
spin-split bulk and surface states, along with the ambipolar character of the
surface charge carriers. The need of studying the spin texture of strongly
spin-orbit coupled materials has recently promoted circular dichroic Angular
Resolved Photoelectron Spectroscopy (cd-ARPES) as an indirect tool to measure
the spin and the angular degrees of freedom. Here we report a detailed photon
energy dependent study of the cd-ARPES spectra in BiTeX (X = I, Br and Cl). Our
work reveals a large variation of the magnitude and sign of the dichroism.
Interestingly, we find that the dichroic signal modulates differently for the
three compounds and for the different spin-split states. These findings show a
momentum and photon energy dependence for the cd-ARPES signals in the bulk
Rashba semiconductor BiTeX (X = I, Br, Cl). Finally, the outcome of our
experiment indicates the important relation between the modulation of the
dichroism and the phase differences between the wave-functions involved in the
photoemission process. This phase difference can be due to initial or final
state effects. In the former case the phase difference results in possible
interference effects among the photo-electrons emitted from different atomic
layers and characterized by entangled spin-orbital polarized bands. In the
latter case the phase difference results from the relative phases of the
expansion of the final state in different outgoing partial waves.Comment: 6 pages, 4 figure
Disentangling the electronic and phononic glue in a high-Tc superconductor
Unveiling the nature of the bosonic excitations that mediate the formation of
Cooper pairs is a key issue for understanding unconventional superconductivity.
A fundamen- tal step toward this goal would be to identify the relative weight
of the electronic and phononic contributions to the overall frequency (\Omega)
dependent bosonic function, \Pi(\Omega). We perform optical spectroscopy on
Bi2212 crystals with simultaneous time- and frequency-resolution; this
technique allows us to disentangle the electronic and phononic contributions by
their different temporal evolution. The strength of the interaction
({\lambda}~1.1) with the electronic excitations and their spectral distribution
fully account for the high critical temperature of the superconducting phase
transition.Comment: 9 pages, 4 figure
Analysis of sequence variability and transcriptional profile of cannabinoid synthase genes in cannabis sativa l. Chemotypes with a focus on cannabichromenic acid synthase
Cannabis sativa L. has been long cultivated for its narcotic potential due to the accumulation of tetrahydrocannabinolic acid (THCA) in female inflorescences, but nowadays its production for fiber, seeds, edible oil and bioactive compounds has spread throughout the world. However, some hemp varieties still accumulate traces of residual THCA close to the 0.20% limit set by European Union, despite the functional gene encoding for THCA synthase (THCAS) is lacking. Even if some hypotheses have been produced, studies are often in disagreement especially on the role of the cannabichromenic acid synthase (CBCAS). In this work a set of European Cannabis genotypes, representative of all chemotypes, were investigated from a chemical and molecular point of view. Highly specific primer pairs were developed to allow an accurate distinction of different cannabinoid synthases genes. In addition to their use as markers to detect the presence of CBCAS at genomic level, they allowed the analysis of transcriptional profiles in hemp or marijuana plants. While the high level of transcription of THCAS and cannabidiolic acid synthase (CBDAS) clearly reflects the chemical phenotype of the plants, the low but stable transcriptional level of CBCAS in all genotypes suggests that these genes are active and might contribute to the final amount of cannabinoids
Early-stage dynamics of metallic droplets embedded in the nanotextured Mott insulating phase of V2 O3
Unveiling the physics that governs the intertwining between the nanoscale self-organization and the dynamics of insulator-to-metal transitions (IMTs) is key for controlling on demand the ultrafast switching in strongly correlated materials and nanodevices. A paradigmatic case is the IMT in V2O3, for which the mechanism that leads to the nucleation and growth of metallic nanodroplets out of the supposedly homogeneous Mott insulating phase is still a mystery. Here, we combine x-ray photoemission electron microscopy and ultrafast nonequilibrium optical spectroscopy to investigate the early-stage dynamics of isolated metallic nanodroplets across the IMT in V2O3 thin films. Our experiments show that the low-temperature monoclinic antiferromagnetic insulating phase is characterized by the spontaneous formation of striped polydomains, with different lattice distortions. The insulating domain boundaries accommodate the birth of metallic nanodroplets, whose nonequilibrium expansion can be triggered by the photoinduced change of the 3d-orbital occupation. We address the relation between the spontaneous nanotexture of the Mott insulating phase in V2O3 and the timescale of the metallic seeds growth. We speculate that the photoinduced metallic growth can proceed along a nonthermal pathway in which the monoclinic lattice symmetry of the insulating phase is partially retained
Photo-enhanced antinodal conductivity in the pseudogap state of high-T-c cuprates
A major challenge in understanding the cuprate superconductors is to clarify the nature of the fundamental electronic correlations that lead to the pseudogap phenomenon. Here we use ultrashort light pulses to prepare a non-thermal distribution of excitations and capture novel properties that are hidden at equilibrium. Using a broadband (0.5-2 eV) probe, we are able to track the dynamics of the dielectric function and unveil an anomalous decrease in the scattering rate of the charge carriers in a pseudogap-like region of the temperature (T) and hole-doping (p) phase diagram. In this region, delimited by a well-defined T*(neq)(p) line, the photoexcitation process triggers the evolution of antinodal excitations from gapped (localized) to delocalized quasiparticles characterized by a longer lifetime. The novel concept of photo-enhanced antinodal conductivity is naturally explained within the singleband Hubbard model, in which the short-range Coulomb repulsion leads to a k-space differentiation between nodal quasiparticles and antinodal excitations. \ua9 2014 Macmillan Publishers Limited. All rights reserved
- …