69 research outputs found

    Two-neutron and core-excited states in Pb 210: Tracing E3 collectivity and evidence for a new β -decaying isomer in Tl 210

    Get PDF
    Yrast and near-yrast levels up to an I=17 spin value and a 6-MeV excitation energy have been delineated in the "two-neutron" Pb210 nucleus following deep-inelastic reactions involving Pb208 targets and a number of heavy-ion beams at energies ∼25% above the Coulomb barrier. The level scheme was established on the basis of multifold prompt and delayed coincidence relationships measured with the Gammasphere array. In addition to the previously known states, many new levels were identified. For most of the strongly populated states, spin-parity assignments are proposed on the basis of angular distributions. The reinvestigation of the ν(g9/2)2, 8+ isomeric decay results in the firm identification of the low-energy E2 transitions involved in the 8+→6+→4+ cascade, and in a revised 6+ level half-life of 92(10) ns, nearly a factor of 2 longer than previously measured. Among the newly identified states figure spin I=4-10 levels associated with the νg9/2i11/2 multiplet, as well as yrast states involving νg9/2j15/2, νi11/2j15/2, and ν(j15/2)2 neutron couplings. The highest-spin excitations are understood as 1p-1h core excitations and the yrast population is found to be fragmented to the extent that levels of spin higher than I=17 could not be reached. Four E3 transitions are present in the Pb210 yrast decay; three of these involve the g9/2→j15/2 octupole component, as reflected in the 21(2) and >10 Weisskopf unit enhancements of the B(E3) rates of the first two. The fourth, 16+→13-E3 transition corresponds to the 3- core octupole excitation built on the νi11/2j15/2 state, in analogy to a similar E3 coupling to the νj15/2 level in Pb209. Shell-model calculations performed for two-neutron states and 1p-1h Pb208 core excitations are in good agreement with the data. Evidence was found for the existence of a hitherto unknown high-spin β-decaying isomer in Tl210. Shell-model calculations of the Tl210 levels suggest the possibility of a 11+ long-lived, β-decaying state, and the delayed yields observed in various reactions fit rather well with a Tl210 assignment

    Doubly magic Pb 208: High-spin states, isomers, and E3 collectivity in the yrast decay

    Get PDF
    Yrast and near-yrast levels up to spin values in excess of I=30 have been delineated in the doubly magic Pb208 nucleus following deep-inelastic reactions involving Pb208 targets and, mostly, 430-MeV Ca48 and 1440-MeV Pb208 beams. The level scheme was established up to an excitation energy of 16.4 MeV, based on multifold γ-ray coincidence relationships measured with the Gammasphere array. Below the well-known, 0.5-μs 10+ isomer, ten new transitions were added to earlier work. The delineation of the higher parts of the level sequence benefited from analyses involving a number of prompt- and delayed-coincidence conditions. Three new isomeric states were established along the yrast line with Iπ=20- (10 342 keV), 23+ (11 361 keV), and 28- (13 675 keV), and respective half-lives of 22(3), 12.7(2), and 60(6) ns. Gamma transitions were also identified preceding in time the 28- isomer; however, only a few could be placed in the level scheme and no firm spin-parity quantum numbers could be proposed. In contrast, for most states below this 28- isomer, firm spin-parity values were assigned, based on total electron-conversion coefficients, deduced for low-energy (<500keV) transitions from γ-intensity balances, and on measured γ-ray angular distributions. The latter also enabled the quantitative determination of mixing ratios. The transition probabilities extracted for all isomeric transitions in Pb208 have been reviewed and discussed in terms of the intrinsic structure of the initial and final levels involved. Particular emphasis was placed on the many observed E3 transitions as they often exhibit significant enhancements in strength [of the order of tens of Weisskopf units (W.u.)] comparable to the one seen for the neutron j15/2→g9/2 E3 transition in Pb209. In this context, the enhancement of the 725-keV E3 transition (56 W.u.) associated with the decay of the highest-lying 28- isomer observed in this work remains particularly challenging to explain. Large-scale shell-model calculations were performed with two approaches, a first one where the 1, 2, and 3 particle-hole excitations do not mix with one another, and another more complex one, in which such mixing takes place. The calculated levels were compared with the data and a general agreement is observed for most of the Pb208 level scheme. At the highest spins and energies, however, the correspondence between theory and experiment is less satisfactory and the experimental yrast line appears to be more regular than the calculated one. This regularity is notable when the level energies are plotted versus the I(I+1) product and the observed, nearly linear, behavior was considered within a simple "rotational" interpretation. Within this approximate picture, the extracted moment of inertia suggests that only the 76 valence nucleons participate in the "rotation" and that the Sn132 spherical core remains inert

    Structure of 207Pb populated in 208Pb + 208Pb deep-inelastic collisions

    Get PDF
    The yrast structure of 207Pb above the 13=2+ isomeric state has been investigated in deep-inelastic collisions of 208Pb and 208Pb at ATLAS, Argonne National Laboratory. New and previously observed transitions were measured using the Gammasphere detector array. The level scheme of 207Pb is presented up to ∼ 6 MeV, built using coincidence and γ-ray intensity analyses. Spin and parity assignments of states were made, based on angular distributions and comparisons to shell model calculations

    Core excitations across the neutron shell gap in 207Tl

    Get PDF
    The single closed-neutron-shell, one proton-hole nucleus 207Tl was populated in deep-inelastic collisions of a 208Pb beam with a 208Pb target. The yrast and near-yrast level scheme has been established up to high excitation energy, comprising an octupole phonon state and a large number of core excited states. Based on shell-model calculations, all observed single core excitations were established to arise from the breaking of the N=126 neutron core. While the shell-model calculations correctly predict the ordering of these states, their energies are compressed at high spins. It is concluded that this compression is an intrinsic feature of shell-model calculations using two-body matrix elements developed for the description of two-body states, and that multiple core excitations need to be considered in order to accurately calculate the energy spacings of the predominantly three-quasiparticle states

    Evolution of deformation in neutron-rich Ba isotopes up to A=150

    Get PDF
    The occurrence of octupolar shapes in the Ba isotopic chain was recently established experimentally up to N = 90. To further extend the systematics, the evolution of shapes in the most neutron-rich members of the Z = 56 isotopic chain accessible at present, Ba-148,Ba-150, has been studied via beta decay at the ISOLDE Decay Station. This paper reports on the first measurement of the positive-and negative-parity low-spin excited states of 150Ba and presents an extension of the beta-decay scheme of Cs-148. Employing the fast timing technique, half-lives for the 2(1)(+) level in both nuclei have been determined, resulting in T-1/2 = 1.51(1) ns for Ba-148 and T-1/2 = 3.4(2) ns for Ba-150. The systematics of low-spin states, together with the experimental determination of the B(E2 : 2(+) -> 0(+)) transition probabilities, indicate an increasing collectivity in Ba148-150, towards prolate deformed shapes. The experimental data are compared to symmetry conserving configuration mixing (SCCM) calculations, confirming an evolution of increasingly quadrupole deformed shapes with a definite octupolar character.Peer reviewe

    Cluster-transfer reactions with radioactive beams: A spectroscopic tool for neutron-rich nuclei

    Get PDF
    An exploratory experiment performed at REX-ISOLDE to investigate cluster-transfer reactions with radioactive beams in inverse kinematics is presented. The aim of the experiment was to test the potential of cluster-transfer reactions at the Coulomb barrier as a mechanism to explore the structure of exotic neutron-rich nuclei. The reactions Li7(Rb98,αxn) and Li7(Rb98,txn) were studied through particle-γ coincidence measurements, and the results are presented in terms of the observed excitation energies and spins. Moreover, the reaction mechanism is qualitatively discussed as a transfer of a clusterlike particle within a distorted-wave Born approximation framework. The results indicate that cluster-transfer reactions can be described well as a direct process and that they can be an efficient method to investigate the structure of neutron-rich nuclei at medium-high excitation energies and spins

    Neutron-rich nuclei produced at zero degrees in damped collisions induced by a beam of 18O on a 238U target

    Get PDF
    Cross sections and corresponding momentum distributions have been measured for the first time at zero degrees for the exotic nuclei obtained from a beam of 18O at 8.5 MeV/A impinging on a 1 mg/cm2 238U target. Sizable cross sections were found for the production of exotic species arising from the neutron transfer and proton removal from the projectile. Comparisons of experimental results with calculations based on deep-inelastic reaction models, taking into account the particle evaporation process, indicate that zero degree is a scattering angle at which the differential reaction cross section for production of exotic nuclei is at its maximum. This result is important in view of the new generation of zero degrees spectrometers under construction, such as the S3 separator at GANIL, for example

    GRIDSA: femtosecond lifetime measurements with germanium detector arrays

    No full text
    We demonstrate the possibility to extract nuclear state femtosecond lifetimes from two-step γ\gamma ray cascades measured with a Ge-detector array. The technique is based on measuring the Doppler shift of a γ\gamma ray, caused by the recoil of a preceding γ\gamma ray emission. Since the two γ\gamma rays are populating/de-populating the same state they form a start/stop signal, the delay of which is compared to the slowing down motion of the nucleus within the target material. A multi-detector array combined with digital acquisition electronics in list mode, allows to measure several angular combinations and two-step cascades efficiently and simultaneously within one single experiment. The concept was demonstrated with the FIPPS array for the 35Cl(n,γ)36Cl^{35}\hbox {Cl(n,}\gamma \hbox {)}^{36}\hbox {Cl} reaction, where we obtained good agreement with literature values showing the validity of the method
    corecore