27 research outputs found

    Darwin's "Abominable Mystery": the role of RNA interference in the evolution of flowering plants

    Get PDF
    Darwin was famously concerned that the sudden appearance and rapid diversification of flowering plants in the mid-Cretaceous could not have occurred by gradual change. Here, we review our attempts to resolve the relationships among the major seed plant groups, i.e., cycads, ginkgo, conifers, gnetophytes, and flowering plants, and to provide a pipeline in which these relationships can be used as a platform for identifying genes of functional importance in plant diversification. Using complete gene sets and unigenes from 16 plant species, genes with positive partitioned Bremer support at major nodes were used to identify overrepresented gene ontology (GO) terms. Posttranscriptional silencing via RNA interference (RNAi) was overrepresented at several major nodes, including between monocots and dicots during early angiosperm divergence. One of these genes, RNA-dependent RNA polymerase 6, is required for the biogenesis of trans-acting small interfering RNA (tasiRNA), confers heteroblasty and organ polarity, and restricts maternal specification of the germline. Processing of small RNA and transfer between neighboring cells underlies these roles and may have contributed to distinct mutant phenotypes in plants, and in particular in the early split of the monocots and eudicots

    Plant species with extremely small populations (PSESP) in China: A seed and spore biology perspective

    Get PDF
    AbstractApproximately one fifth of the world's plants are at risk of extinction. Of these, a significant number exist as populations of few individuals, with limited distribution ranges and under enormous pressure due to habitat destruction. In China, these most-at-risk species are described as ‘plant species with extremely small populations’ (PSESP). Implementing conservation action for such listed species is urgent. Storing seeds is one of the main means of ex situ conservation for flowering plants. Spore storage could provide a simple and economical method for fern ex situ conservation. Seed and spore germination in nature is a critical step in species regeneration and thus in situ conservation. But what is known about the seed and spore biology (storage and germination) of at-risk species? We have used China's PSESP (the first group listing) as a case study to understand the gaps in knowledge on propagule biology of threatened plant species. We found that whilst germination information is available for 28 species (23% of PSESP), storage characteristics are only known for 8% of PSESP (10 species). Moreover, we estimate that 60% of the listed species may require cryopreservation for long-term storage. We conclude that comparative biology studies are urgently needed on the world's most threatened taxa so that conservation action can progress beyond species listing

    A Functional Phylogenomic View of the Seed Plants

    Get PDF
    A novel result of the current research is the development and implementation of a unique functional phylogenomic approach that explores the genomic origins of seed plant diversification. We first use 22,833 sets of orthologs from the nuclear genomes of 101 genera across land plants to reconstruct their phylogenetic relationships. One of the more salient results is the resolution of some enigmatic relationships in seed plant phylogeny, such as the placement of Gnetales as sister to the rest of the gymnosperms. In using this novel phylogenomic approach, we were also able to identify overrepresented functional gene ontology categories in genes that provide positive branch support for major nodes prompting new hypotheses for genes associated with the diversification of angiosperms. For example, RNA interference (RNAi) has played a significant role in the divergence of monocots from other angiosperms, which has experimental support in Arabidopsis and rice. This analysis also implied that the second largest subunit of RNA polymerase IV and V (NRPD2) played a prominent role in the divergence of gymnosperms. This hypothesis is supported by the lack of 24nt siRNA in conifers, the maternal control of small RNA in the seeds of flowering plants, and the emergence of double fertilization in angiosperms. Our approach takes advantage of genomic data to define orthologs, reconstruct relationships, and narrow down candidate genes involved in plant evolution within a phylogenomic view of species' diversification

    What is the Conservation Value of a Plant in a Botanic Garden? Using Indicators to Improve Management of Ex Situ Collections

    No full text
    Living botanic garden plant collections are a fundamental and underutilized worldwide resource for plant conservation. A common goal in managing a botanical living collection is to maintain the greatest biodiversity at the greatest economic and logistic efficiency. However to date there is no unified strategy for managing living plants within and among botanic gardens. We propose a strategy that combines three indicators of the management priority of a collection: information on species imperilment, genetic representation, and the operational costs associated to maintaining genetic representation. In combination or alone, these indicators can be used to assay effectiveness and efficiency of living collections, and to assign a numeric conservation value to an accession. We illustrate this approach using endangered palms that have been studied to varying degrees. Management decisions can be readily extended to other species based on our indicators. Thus, the conservation value of a species can be shared through existing databases with other botanic gardens and provide a list of recommendations toward a combined management strategy for living collections. Our approach is easily implemented and well suited for decision-making by gardens and organizations interested in plant conservation. © 2013 The New York Botanical Garden

    Spin-Isospin Modes in Heavy-Ion Collisions

    Get PDF
    Plant development is remarkably plastic but how precisely can the plant customize its form to specific environments When the plant adjusts its development to different environments, related traits can change in a coordinated fashion, such that two traits co-vary across many genotypes. Alternatively, traits can vary independently, such that a change in one trait has little predictive value for the change in a second trait. To characterize such ‘‘tunability’’ in developmental plasticity, we carried out a detailed phenotypic characterization of complex root traits among 96 accessions of the model Arabidopsis thaliana in two nitrogen environments. The results revealed a surprising level of independence in the control of traits to environment – a highly tunable form of plasticity. We mapped genetic architecture of plasticity using genome-wide association studies and further used gene expression analysis to narrow down gene candidates in mapped regions. Mutants in genes implicated by association and expression analysis showed precise defects in the predicted traits in the predicted environment, corroborating the independent control of plasticity traits. The overall results suggest that there is a pool of genetic variability in plants that controls traits in specific environments, with opportunity to tune crop plants to a given environment
    corecore