199 research outputs found

    Precise mirror alignment and basic performance of the RICH detector of the NA62 experiment at CERN

    Get PDF
    The Ring Imaging Cherenkov detector is crucial for the identification of charged particles in the NA62 experiment at the CERN SPS. The detector commissioning was completed in 2016 by the precise alignment of mirrors using reconstructed tracks. The alignment procedure and measurement of the basic performance are described. Ring radius resolution, ring centre resolution, single hit resolution and mean number of hits per ring are evaluated for positron tracks. The contribution of the residual mirror misalignment to the performance is calculated.Comment: 13 pages, 10 figure

    Light Detection System and Time Resolution of the NA62 RICH

    Get PDF
    A large RICH detector is used in NA62 to suppress the muon contamination in the charged pion sample by a factor of 100 in the momentum range between 15 and 35 GeV/c. Cherenkov light is collected by 1952 photomultipliers placed at the upstream end. In this paper the characterization of the photomultipliers and the dedicated Frontend and Data Acquisition electronics are described, the time resolution and the light detection efficiency measurement are presented.Comment: 15 pages, 11 figure

    Mirror system of the RICH detector of the NA62 experiment

    Get PDF
    A large RICH detector is used in NA62 to suppress the muon contamination in the charged pion selection by a factor 100 in the momentum range between 15 and 35 GeV/c. The detector consists of a 17 m long tank (vessel), filled with neon gas at atmospheric pressure. Cherenkov light is reflected by a mosaic of 20 spherical mirrors with 17 m focal length, placed at the downstream end, and collected by 1952 photomultipliers (PMTs) placed at the upstream end. In this paper the characterization of the mirrors before installation and the mirror support system are described. The mirror installation procedure and the laser alignment are also illustrated

    The MURAVES muon telescope: a low power consumption muon tracker for muon radiography applications

    Get PDF
    Muon Radiography or muography is based on the measurement of the absorption or scattering of cosmic muons, as they pass through the interior of large scale bodies, In particular, absorption muography has been applied to investigate the presence of hidden cavities inside the pyramids or underground, as well as the interior of volcanoes' edifices. The MURAVES project has the challenging aim of investigating the density distribution inside the summit of Mt. Vesuvius. The information, together with that coming from gravimetric measurements, is useful as input to models, to predict how an eruption may develop. The MURAVES apparatus is a robust and low power consumption muon telescope consisting of an array of three identical and independent muon trackers, which provide in a modular way a total sensitive area of three square meters. Each tracker consists of four doublets of planes of plastic scintillator bars with orthogonal orientation, optically coupled to Silicon photomultipliers for the readout of the signal. The muon telescope has been installed on the slope of the volcano and has collected a first set of data, which are being analyzed

    Prospects for K+π+ννˉK^+ \to \pi^+ \nu \bar{ \nu } at CERN in NA62

    Full text link
    The NA62 experiment will begin taking data in 2015. Its primary purpose is a 10% measurement of the branching ratio of the ultrarare kaon decay K+π+ννˉK^+ \to \pi^+ \nu \bar{ \nu }, using the decay in flight of kaons in an unseparated beam with momentum 75 GeV/c.The detector and analysis technique are described here.Comment: 8 pages for proceedings of 50 Years of CP

    The MURAVES Experiment: A Study of the Vesuvius Great Cone with Muon Radiography

    Get PDF
    The MURAVES experiment aims at the muographic imaging of the internal structure of the summit of Mt. Vesuvius, exploiting muons produced by cosmic rays. Though presently quiescent, the volcano carries a dramatic hazard in its highly populated surroundings. The challenging measurement of the rock density distribution in its summit by muography, in conjunction with data from other geophysical techniques, can help the modeling of possible eruptive dynamics. The MURAVES apparatus consists of an array of three independent and identical muon trackers, with a total sensitive area of 3 square meters. In each tracker, a sequence of 4 XY tracking planes made of plastic scintillators is complemented by a 60 cm thick lead wall inserted between the two downstream planes to improve rejection of background from low-energy muons. The apparatus is currently acquiring data. Preliminary results from the analysis of the first data sample are presented

    The RICH detector of the NA62 experiment at CERN

    Get PDF
    The NA62 experiment at CERN aims to measure the branching ratio of the ultra-rare charged kaon decay K+→π+νν¯ with a 10% accuracy and with a background contamination at the 10% level. Since the branching ratio of this decay is O (10 −10 ), to fulfill such request one of the main backgrounds, the decay K+→μ+ν (BR ~63% ), must be suppressed by a rejection factor of 4×10 −13 (assuming 10% signal acceptance). This can be partially accomplished using a combination of kinematical cuts (8×10 −6 ) and the different power of penetration through matter of pions and muons (10 −5 ). A further 5×10 −3 suppression factor will be provided by a RICH detector, in a momentum range between 15 and 35 GeV/c. The details of the RICH project as well as the results from test runs performed on a RICH prototype of the same length of the final detector will be presented. The current status of the construction and the description of the final readout and trigger electronics will also be reviewed

    Externalities and the nucleolus

    Full text link
    In most economic applications, externalities prevail: the worth of a coalition depends on how the other players are organized. We show that there is a unique natural way of extending the nucleolus from (coalitional) games without externalities to games with externalities. This is in contrast to the Shapley value and the core for which many different extensions have been proposed

    Trapping in irradiated p-on-n silicon sensors at fluences anticipated at the HL-LHC outer tracker

    Get PDF
    The degradation of signal in silicon sensors is studied under conditions expected at the CERN High-Luminosity LHC. 200 μ\mum thick n-type silicon sensors are irradiated with protons of different energies to fluences of up to 310153 \cdot 10^{15} neq/cm2^2. Pulsed red laser light with a wavelength of 672 nm is used to generate electron-hole pairs in the sensors. The induced signals are used to determine the charge collection efficiencies separately for electrons and holes drifting through the sensor. The effective trapping rates are extracted by comparing the results to simulation. The electric field is simulated using Synopsys device simulation assuming two effective defects. The generation and drift of charge carriers are simulated in an independent simulation based on PixelAV. The effective trapping rates are determined from the measured charge collection efficiencies and the simulated and measured time-resolved current pulses are compared. The effective trapping rates determined for both electrons and holes are about 50% smaller than those obtained using standard extrapolations of studies at low fluences and suggests an improved tracker performance over initial expectations

    Selection of the silicon sensor thickness for the Phase-2 upgrade of the CMS Outer Tracker

    Get PDF
    During the operation of the CMS experiment at the High-Luminosity LHC the silicon sensors of the Phase-2 Outer Tracker will be exposed to radiation levels that could potentially deteriorate their performance. Previous studies had determined that planar float zone silicon with n-doped strips on a p-doped substrate was preferred over p-doped strips on an n-doped substrate. The last step in evaluating the optimal design for the mass production of about 200 m2^{2} of silicon sensors was to compare sensors of baseline thickness (about 300 μm) to thinned sensors (about 240 μm), which promised several benefits at high radiation levels because of the higher electric fields at the same bias voltage. This study provides a direct comparison of these two thicknesses in terms of sensor characteristics as well as charge collection and hit efficiency for fluences up to 1.5 × 1015^{15} neq_{eq}/cm2^{2}. The measurement results demonstrate that sensors with about 300 μm thickness will ensure excellent tracking performance even at the highest considered fluence levels expected for the Phase-2 Outer Tracker
    corecore