248 research outputs found

    X Chromosome Activity in Mouse XX Primordial Germ Cells

    Get PDF
    In the early epiblast of female mice, one of the two X chromosomes is randomly inactivated by a Xist-dependent mechanism, involving the recruitment of Ezh2-Eed and the subsequent trimethylation of histone 3 on lysine 27 (H3K27me3). We demonstrate that this random inactivation process applies also to the primordial germ cell (PGC) precursors, located in the proximal region of the epiblast. PGC specification occurs at about embryonic day (E)7.5, in the extraembryonic mesoderm, after which the germ cells enter the endoderm of the invaginating hindgut. As they migrate towards the site of the future gonads, the XX PGCs gradually lose the H3K27me3 accumulation on the silent X chromosome. However, using a GFP transgene inserted into the X chromosome, we observed that the XX gonadal environment (independently of the gender) is important for the substantial reactivation of the inactive X chromosome between E11.5 and E13.5, but is not required for X-chromosome reactivation during the derivation of pluripotent embryonic germ cells. We describe in detail one of the key events during female PGC development, the epigenetic reprogramming of the X chromosome, and demonstrate the role of the XX somatic genital ridge in this process

    The extended analogy of extraembryonic development in insects and amniotes

    Get PDF
    It is fascinating that the amnion and serosa/chorion, two extraembryonic (EE) tissues that are characteristic of the amniote vertebrates (mammals, birds and reptiles), have also independently evolved in insects. In this review, we offer the first detailed, macroevolutionary comparison of EE development and tissue biology across these animal groups. Some commonalities represent independent solutions to shared challenges for protecting the embryo (environmental assaults, risk of pathogens) and supporting its development, including clear links between cellular properties (e.g. polyploidy) and physiological function. Further parallels encompass developmental features such as the early segregation of the serosa/chorion compared to later, progressive differentiation of the amnion and formation of the amniotic cavity from serosal–amniotic folds as a widespread morphogenetic mode across species. We also discuss common developmental roles for orthologous transcription factors and BMP signalling in EE tissues of amniotes and insects, and between EE and cardiac tissues, supported by our exploration of new resources for global and tissue-specific gene expression. This highlights the degree to which general developmental principles and protective tissue features can be deduced from each of these animal groups, emphasizing the value of broad comparative studies to reveal subtle developmental strategies and answer questions that are common across species. This article is part of the theme issue ‘Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom’

    Extended in vitro culture of human embryos demonstrates the complex nature of diagnosing chromosomal mosaicism from a single trophectoderm biopsy

    No full text
    STUDY QUESTION What is the accuracy of preimplantation genetic testing for aneuploidies (PGT-A) when considering human peri-implantation outcomes in vitro? STUDY ANSWER The probability of accurately diagnosing an embryo as abnormal was 100%, while the proportion of euploid embryos classified as clinically suitable was 61.9%, yet if structural and mosaic abnormalities were not considered accuracy increased to 100%, with a 0% false positive and false negative rate. WHAT IS ALREADY KNOWN Embryo aneuploidy is associated with implantation failure and early pregnancy loss. However, a proportion of blastocysts are mosaic, containing chromosomally distinct cell populations. Diagnosing chromosomal mosaicism remains a significant challenge for PGT-A. Although mosaic embryos may lead to healthy live births, they are also associated with poorer clinical outcomes. Moreover, the direct effects of mosaicism on early pregnancy remain unknown. Recently, developed in vitro systems allow extended embryo culture for up to 14 days providing a unique opportunity for modelling chromosomal instability during human peri-implantation development. STUDY DESIGN, SIZE, DURATION A total of 80 embryos were cultured to either 8 (n = 7) or 12 days post-fertilisation (dpf; n = 73). Of these, 54 were PGT-A blastocysts, donated to research following an abnormal (n = 37) or mosaic (n = 17) diagnosis. The remaining 26 were supernumerary blastocysts, obtained from standard assisted reproductive technology (ART) cycles. These embryos underwent trophectoderm (TE) biopsy prior to extended culture. PARTICIPANTS/MATERIALS, SETTING, METHODS We applied established culture protocols to generate embryo outgrowths. Outgrowth viability was assessed based on careful morphological evaluation. Nine outgrowths were further separated into two or more portions corresponding to inner cell mass (ICM) and TE-derived lineages. A total of 45 embryos were selected for next generation sequencing (NGS) at 8 or 12 dpf. We correlated TE biopsy profiles to both culture outcomes and the chromosomal status of the embryos during later development. MAIN RESULTS AND THE ROLE OF CHANCE Of the 73 embryos cultured to 12 dpf, 51% remained viable, while 49% detached between 8 and 12 dpf. Viable, Day 12 outgrowths were predominately generated from euploid blastocysts and those diagnosed with trisomies, duplications or mosaic aberrations. Conversely, monosomies, deletions and more complex chromosomal constitutions significantly impaired in vitro development to 12 dpf (10% vs. 77%, P < 0.0001). When compared to the original biopsy, we determined 100% concordance for uniform numerical aneuploidies, both in whole outgrowths and in the ICM and TE-derived outgrowth portions. However, uniform structural variants were not always confirmed later in development. Moreover, a high proportion of embryos originally diagnosed as mosaic remained viable at 12 dpf (58%). Of these, 71% were euploid, with normal profiles observed in both ICM and TE-derived lineages. Based on our validation data, we determine a 0% false negative and 18.5% false positive error rate when diagnosing mosaicism. Overall, our findings demonstrate a diagnostic accuracy of 80% in the context of PGT-A. Nevertheless, if structural and mosaic abnormalities are not considered, accuracy increases to 100%, with a 0% false positive and false negative rate. LIMITATIONS REASONS FOR CAUTION The inherent limitations of extended in vitro culture, particularly when modelling critical developmental milestones, warrant careful interpretation. WIDER IMPLICATIONS OF THE FINDINGS Our findings echo current prenatal testing data and support the high clinical predictive value of PGT-A for diagnosing uniform numerical aneuploidies, as well as euploid chromosomal constitutions. However, distinguishing technical bias from biological variability will remain a challenge, inherently limiting the accuracy of a single TE biopsy for diagnosing mosaicism. STUDY FUNDING, COMPETING INTEREST(S) This research is funded by the Ghent University Special Research Fund (BOF01D08114) awarded to M.P., the Research FoundationFlanders (FWO.KAN.0005.01) research grant awarded to B.H. and De Snoo-van't Hoogerhuijs Stichting awarded to S.M.C.d.S.L. We thank Ferring Pharmaceuticals (Aalst, Belgium) for their unrestricted educational grant. The authors declare no competing interests. TRIAL REGISTRATION NUMBER N/A

    Stay on the road: from germ cell specification to gonadal colonization in mammals

    Get PDF
    The founder cells of the gametes are primordial germ cells (PGCs). In mammals, PGCs are specified early during embryonic development, at the boundary between embryonic and extraembryonic tissue, long before their later residences, the gonads, have developed. Despite the differences in form and behaviour when differentiated into oocytes or sperm cells, in the period between specification and gonadal colonization, male and female PGCs are morphologically indistinct and largely regulated by similar mechanisms. Here, we compare different modes and mechanisms that lead to the formation of PGCs, putting in context protocols that are in place to differentiate both human and mouse pluripotent stem cells into PGC-like cells. In addition, we review important aspects of the migration of PGCs to the gonadal ridges, where they undergo further sex-specific differentiation. Defects in migration need to be effectively corrected, as misplaced PGCs can become tumorigenic. Concluding, a combination of in vivo studies and the development of adequate innovative in vitro models, ensuring both robustness and standardization, are providing us with the tools for a greater understanding of the first steps of gametogenesis and to develop disease models to study the origin of germ cell tumours. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'

    Rethinking organoid technology through bioengineering

    Get PDF
    In recent years considerable progress has been made in the development of faithful procedures for the differentiation of human pluripotent stem cells (hPSCs). An important step in this direction has also been the derivation of organoids. This technology generally relies on traditional three-dimensional culture techniques that exploit cell-autonomous self-organization responses of hPSCs with minimal control over the external inputs supplied to the system. The convergence of stem cell biology and bioengineering offers the possibility to provide these stimuli in a controlled fashion, resulting in the development of naturally inspired approaches to overcome major limitations of this nascent technology. Based on the current developments, we emphasize the achievements and ongoing challenges of bringing together hPSC organoid differentiation, bioengineering and ethics. This Review underlines the need for providing engineering solutions to gain control of self-organization and functionality of hPSC-derived organoids. We expect that this knowledge will guide the community to generate higher-grade hPSC-derived organoids for further applications in developmental biology, drug screening, disease modelling and personalized medicine

    Cognitive radio network in vehicular ad hoc network (VANET): a survey

    Get PDF
    Cognitive radio network and vehicular ad hoc network (VANET) are recent emerging concepts in wireless networking. Cognitive radio network obtains knowledge of its operational geographical environment to manage sharing of spectrum between primary and secondary users, while VANET shares emergency safety messages among vehicles to ensure safety of users on the road. Cognitive radio network is employed in VANET to ensure the efficient use of spectrum, as well as to support VANET’s deployment. Random increase and decrease of spectrum users, unpredictable nature of VANET, high mobility, varying interference, security, packet scheduling, and priority assignment are the challenges encountered in a typical cognitive VANET environment. This paper provides survey and critical analysis on different challenges of cognitive radio VANET, with discussion on the open issues, challenges, and performance metrics for different cognitive radio VANET applications

    The TGFÎČ Family in Human Placental Development at the Fetal-Maternal Interface

    Get PDF
    Publisher's version (Ăștgefin grein)Emerging data suggest that a trophoblast stem cell (TSC) population exists in the early human placenta. However, in vitro stem cell culture models are still in development and it remains under debate how well they reflect primary trophoblast (TB) cells. The absence of robust protocols to generate TSCs from humans has resulted in limited knowledge of the molecular mechanisms that regulate human placental development and TB lineage specification when compared to other human embryonic stem cells (hESCs). As placentation in mouse and human differ considerably, it is only with the development of human-based disease models using TSCs that we will be able to understand the various diseases caused by abnormal placentation in humans, such as preeclampsia. In this review, we summarize the knowledge on normal human placental development, the placental disease preeclampsia, and current stem cell model systems used to mimic TB differentiation. A special focus is given to the transforming growth factor-beta (TGFÎČ) family as it has been shown that the TGFÎČ family has an important role in human placental development and disease.M.S.A. is supported by the “Göngum saman” cancer fund and the Helga Jonsdottir and Sigurlidi Kristjansson memorial fund; G.V. is supported by the University of Iceland research fund, the Icelandic cancer association, and the Watanabe trust fund at the University of Iceland.Peer Reviewe

    Two decades of embryonic stem cells : a historical overview

    Get PDF
    STUDY QUESTION How did the field of stem cell research develop in the years following the derivation of the first human embryonic stem cell (hESC) line? SUMMARY ANSWER Supported by the increasing number of clinical trials to date, significant technological advances in the past two decades have brought us ever closer to clinical therapies derived from pluripotent cells. WHAT IS KNOWN ALREADY Since their discovery 20 years ago, the use of human pluripotent stem cells has progressed tremendously from bench to bedside. Here, we provide a concise review of the main keystones of this journey and focus on ongoing clinical trials, while indicating the most relevant future research directions. STUDY DESIGN, SIZE, DURATION This is a historical narrative, including relevant publications in the field of pluripotent stem cells (PSC) derivation and differentiation, recounted both through scholarly research of published evidence and interviews of six pioneers who participated in some of the most relevant discoveries in the field. PARTICIPANTS/MATERIALS, SETTING, METHODS The authors all contributed by researching the literature and agreed upon body of works. Portions of the interviews of the field pioneers have been integrated into the review and have also been included in full for advanced reader interest. MAIN RESULTS AND THE ROLE OF CHANCE The stem cell field is ever expanding. We find that in the 20 years since the derivation of the first hESC lines, several relevant developments have shaped the pluripotent cell field, from the discovery of different states of pluripotency, the derivation of induced PSC, the refinement of differentiation protocols with several clinical trials underway, as well as the recent development of organoids. The challenge for the years to come will be to validate and refine PSCs for clinical use, from the production of highly defined cell populations in clinical grade conditions to the possibility of creating replacement organoids for functional, if not anatomical, function restoration. LIMITATIONS, REASONS FOR CAUTION This is a non-systematic review of current literature. Some references may have escaped the experts’ analysis due to the exceedingly diverse nature of the field. As the field of regenerative medicine is rapidly advancing, some of the most recent developments may have not been captured entirely. WIDER IMPLICATIONS OF THE FINDINGS The multi-disciplinary nature and tremendous potential of the stem cell field has important implications for basic as well as translational research. Recounting these activities will serve to provide an in-depth overview of the field, fostering a further understanding of human stem cell and developmental biology. The comprehensive overview of clinical trials and expert opinions included in this narrative may serve as a valuable scientific resource, supporting future efforts in translational approaches. STUDY FUNDING/COMPETING INTEREST(S) ESHRE provided funding for the authors’ on-site meeting and discussion during the preparation of this manuscript. S.M.C.S.L. is funded by the European Research Council Consolidator (ERC-CoG-725722-OVOGROWTH). M.P. is supported by the Special Research Fund, Bijzonder Onderzoeksfonds (BOF01D08114). M.G. is supported by the Methusalem grant of Vrije Universiteit Brussel, in the name of Prof. Karen Sermon and by Innovation by Science and Technology in Flanders (IWT, Project Number: 150042). A.V. and B.A. are supported by the Plataforma de Proteomica, Genotipado y Líneas Celulares (PT1770019/0015) (PRB3), Instituto de Salud Carlos III. Research grant to B.H. by the Research Foundation—Flanders (FWO) (FWO.KAN.2016.0005.01 and FWO.Project G051516N). There are no conflicts of interest to declare. TRIAL REGISTRATION NUMBER Not applicable. ESHRE Pages are not externally peer reviewed. This article has been approved by the Executive Committee of ESHRE
    • 

    corecore