3,174 research outputs found

    A Time-Dependent Dirichlet-Neumann Method for the Heat Equation

    Full text link
    We present a waveform relaxation version of the Dirichlet-Neumann method for parabolic problem. Like the Dirichlet-Neumann method for steady problems, the method is based on a non-overlapping spatial domain decomposition, and the iteration involves subdomain solves with Dirichlet boundary conditions followed by subdomain solves with Neumann boundary conditions. However, each subdomain problem is now in space and time, and the interface conditions are also time-dependent. Using a Laplace transform argument, we show for the heat equation that when we consider finite time intervals, the Dirichlet-Neumann method converges, similar to the case of Schwarz waveform relaxation algorithms. The convergence rate depends on the length of the subdomains as well as the size of the time window. In this discussion, we only stick to the linear bound. We illustrate our results with numerical experiments.Comment: 9 pages, 5 figures, Lecture Notes in Computational Science and Engineering, Vol. 98, Springer-Verlag 201

    Mg II Absorber Number Density at z~0.05: Implications for Omega_DLA Evolution

    Full text link
    An unbiased sample of 147 quasar/AGN spectra, obtained with the FOS/HST, has been searched for intervening MgII absorbers over the redshift range 0<z<0.15. The total redshift path searched is 18.8, with the survey being 80% complete to a 5-sigma rest-frame equivalent width, W_r(2796), of 0.6 Ang. Main results of this work are: [1] Four systems were found, with a mean redshift of =0.06, yielding a redshift number density dN/dz=0.22(+0.12)(-0.09) for absorbers with W_r(2796)>0.6 Ang. This is consistent with the value expected if these systems do not evolve from higher redshifts (z=2.2). [2] No systems with W_r(2796)<0.6 Ang were found. It is a 2-sigma result to have a null detection of smaller W_r(2796) systems. If this implies a turnover in the low W_r(2796) region of the equivalent width distribution at z~0, then there is at least a 25% reduction in the average galaxy gas cross section from z<0.2 galaxies. [3] These systems have strong FeII absorption and are good candidates for damped Ly-alpha absorbers DLAs (see Rao & Turnshek 2000, ApJS, 130, 1). This translates to a redshift number density of dN/dz=0.08(+0.09)(-0.05) for DLAs at z~0. In tandem with the data analyzed by Rao & Turnshek, these results indicate that the redshift number density of DLAs does not evolve from z~4 to z~0. If the HI mass function does not evolve from z~0.5 to z~0, then the cosmological HI mass density is also deduced to not evolve from z~4 to z~0. These z~0 results for MgII absorption-selected DLAs are at odds with those based upon 21-cm emission from HI galaxies by a factor of five to six.Comment: 23 pages, 7 Figures, accepted to ApJ. Replaced version includes additional figures and tables and substantial modifications to the tex

    Adiabatic Approximation for weakly open systems

    Full text link
    We generalize the adiabatic approximation to the case of open quantum systems, in the joint limit of slow change and weak open system disturbances. We show that the approximation is ``physically reasonable'' as under wide conditions it leads to a completely positive evolution, if the original master equation can be written on a time-dependent Lindblad form. We demonstrate the approximation for a non-Abelian holonomic implementation of the Hadamard gate, disturbed by a decoherence process. We compare the resulting approximate evolution with numerical simulations of the exact equation.Comment: New material added, references added and updated, journal reference adde

    Heat exchange mediated by a quantum system

    Full text link
    We consider heat transfer between two thermal reservoirs mediated by a quantum system using the generalized quantum Langevin equation. The thermal reservoirs are treated as ensembles of oscillators within the framework of the Drude-Ullersma model. General expressions for the heat current and thermal conductance are obtained for arbitrary coupling strength between the reservoirs and the mediator and for different temperature regimes. As an application of these results we discuss the origin of Fourier's law in a chain of large, but finite subsystems coupled to each other by the quantum mediators. We also address a question of anomalously large heat current between the STM tip and substrate found in a recent experiment. The question of minimum thermal conductivity is revisited in the framework of scaling theory as a potential application of the developed approach.Comment: 16 pages, 6 figure

    Are you feeling lucky?:lottery-based scheduling for public displays

    Get PDF
    Scheduling content onto pervasive displays is a complex problem. Researchers have identified an array of potential requirements that can influence scheduling decisions, but the relative importance of these different requirements varies across deployments, with context, and over time. In this paper we describe the design and implementation of a lottery-based scheduling approach that allows for the combination of multiple scheduling policies and is easily extensible to accommodate new scheduling requirements

    A valley-spin qubit in a carbon nanotube

    Full text link
    Although electron spins in III-V semiconductor quantum dots have shown great promise as qubits, a major challenge is the unavoidable hyperfine decoherence in these materials. In group IV semiconductors, the dominant nuclear species are spinless, allowing for qubit coherence times that have been extended up to seconds in diamond and silicon. Carbon nanotubes are a particularly attractive host material, because the spin-orbit interaction with the valley degree of freedom allows for electrical manipulation of the qubit. In this work, we realise such a qubit in a nanotube double quantum dot. The qubit is encoded in two valley-spin states, with coherent manipulation via electrically driven spin resonance (EDSR) mediated by a bend in the nanotube. Readout is performed by measuring the current in Pauli blockade. Arbitrary qubit rotations are demonstrated, and the coherence time is measured via Hahn echo. Although the measured decoherence time is only 65 ns in our current device, this work offers the possibility of creating a qubit for which hyperfine interaction can be virtually eliminated

    Non variability of intervening absorbers observed in the UVES spectra of the "naked-eye" GRB080319

    Full text link
    The aim of this paper is to investigate the properties of the intervening absorbers lying along the line of sight of Gamma-Ray Burst (GRB) 080319B through the analysis of its optical absorption features. To this purpose, we analyze a multi-epoch, high resolution spectroscopic observations (R=40000, corresponding to 7.5 km/s) of the optical afterglow of GRB080319B (z=0.937), taken with UVES at the VLT. Thanks to the rapid response mode (RRM), we observed the afterglow just 8m:30s after the GRB onset when the magnitude was R ~ 12. This allowed us to obtain the best signal-to-noise, high resolution spectrum of a GRB afterglow ever (S/N per resolution element ~ 50). Two further RRM and target of opportunity observations were obtained starting 1.0 and 2.4 hours after the event, respectively. Four MgII absorption systems lying along the line of sight to the afterglow have been detected in the redshift range 0.5 < z < 0.8, most of them showing a complex structure featuring several components. Absorptions due to FeII, MgI and MnII are also present; they appear in four, two and one intervening absorbers, respectively. One out of four systems show a MgII2796 rest frame equivalent width larger than 1A. This confirms the excess of strong MgII absorbers compared to quasars, with dn/dz = 0.9, ~ 4 times larger than the one observed along quasar lines of sight. In addition, the analysis of multi-epoch, high-resolution spectra allowed us to exclude a significant variability in the column density of the single components of each absorber. Combining this result with estimates of the size of the emitting region, we can reject the hypothesis that the difference between GRB and QSO MgII absorbers is due to a different size of the emitting regions.Comment: 10 pages, 15 ps figures, submitted to MNRA

    Wetting and Minimal Surfaces

    Get PDF
    We study minimal surfaces which arise in wetting and capillarity phenomena. Using conformal coordinates, we reduce the problem to a set of coupled boundary equations for the contact line of the fluid surface, and then derive simple diagrammatic rules to calculate the non-linear corrections to the Joanny-de Gennes energy. We argue that perturbation theory is quasi-local, i.e. that all geometric length scales of the fluid container decouple from the short-wavelength deformations of the contact line. This is illustrated by a calculation of the linearized interaction between contact lines on two opposite parallel walls. We present a simple algorithm to compute the minimal surface and its energy based on these ideas. We also point out the intriguing singularities that arise in the Legendre transformation from the pure Dirichlet to the mixed Dirichlet-Neumann problem.Comment: 22 page

    Iron overload causes endolysosomal deficits modulated by NAADP-regulated 2-pore channels and RAB7A

    Get PDF
    Various neurodegenerative disorders are associated with increased brain iron content. Iron is known to cause oxidative stress, which concomitantly promotes cell death. Whereas endolysosomes are known to serve as intracellular iron storage organelles, the consequences of increased iron on endolysosomal functioning, and effects on cell viability upon modulation of endolysosomal iron release remain largely unknown. Here, we show that increasing intracellular iron causes endolysosomal alterations associated with impaired autophagic clearance of intracellular protein aggregates, increased cytosolic oxidative stress and increased cell death. These effects are subject to regulation by NAADP, a potent second messenger reported to target endolysosomal TPCNs (2-pore channels). Consistent with endolysosomal iron storage, cytosolic iron levels are modulated by NAADP, and increased cytosolic iron is detected when overexpressing active, but not inactive TPCNs, indicating that these channels can modulate endolysosomal iron release. Cell death triggered by altered intralysosomal iron handling is abrogated in the presence of an NAADP antagonist or when inhibiting RAB7A activity. Taken together, our results suggest that increased endolysosomal iron causes cell death associated with increased cytosolic oxidative stress as well as autophagic impairments, and these effects are subject to modulation by endolysosomal ion channel activity in a RAB7A-dependent manner. These data highlight alternative therapeutic strategies for neurodegenerative disorders associated with increased intracellular iron load

    On the cosmological variation of the fine structure constant

    Get PDF
    A phenomenological model is proposed to explain the recent observed cosmological variation of the fine structure constant as an effect of the quantum vacuum, assuming a flat universe with cosmological constant Λ\Lambda in the cases (ΩM,ΩΛ\Omega_M, \Omega_\Lambda) equal to (0.3,0.7) and (1,0). Because of the fourth Heisenberg relation, the lifetime of the virtual pairs of the zero-point radiation must depend on the gravitational potential, so that the quantum vacuum changes its density and acquires a relative permittivity different from one. Since the matter was more concentrated in the past, the gravitational potential of all the universe was stronger and the optical density of the vacuum higher, the electron charge being then more renormalized and smaller than now. The model is based on a first order Newtonian approximation that is valid for the range of the observations, but not for very high redshift, its prediction being that Δα/α\Delta \alpha /\alpha is proportional to ΩM[a(t)11]2ΩΛ[a(t)21]\Omega_M[a(t)^{-1}-1]-2\Omega_\Lambda [a(t)^2-1], a(t)a(t) being the scale factor. This agrees with the observations.Comment: 11 pages, one figure. In this new version, the effect of the cosmological constant is considere
    corecore