2,244 research outputs found
Performance and Emission Reduction using of Indian Pomegranate seed oil as bio-diesel
The study in made to replace the existing diesel fuel with the bio – fuels, for this fruit like Indian Pomegranate seed oil as bio – diesel is utilized. The main objective of this work is to discuss the impact of biodiesel from Pomegranate fruit seed oil bio-diesel on performance, combustion and emission characteristics diesel. In this study, the effect of bio-diesel from fruit seed oil [Indian Pomegranate seed oil] and its blends on a single cylinder Kirloskar TV-1 diesel engine were investigated.
In this work, the performance, combustion and emission analysis were conducted. The tests were performed at steady state conditions with the blend ratio of B25, B50, B75 and B100. These represent the ratio of biodiesel in the blend and the rest diesel. The aim of this investigation was to reformulate the fuel to utilize the biodiesel and its blend to enhance the fuels performance, combustion characteristic and to reduce the pollution from the engine. In this work only Indian Jujube seed oil bio-diesel is utilized for the experimental work. The experimental results reveal a marginal decrease in brake thermal efficiency when compared to that of sole fuel. In this investigation, the emission test were done with the help of AVL DI gas analyzer, in which CO, HC and NOx are appreciably reduced on the other hand smoke, CO2 have marginal increased when compared to that of sole fuel. In this work combustion analysis also made with the help of AVL combustion analyzer in which bio diesel blend shows the better result when compared with diesel
Texture and shape of two-dimensional domains of nematic liquid crystal
We present a generalized approach to compute the shape and internal structure
of two-dimensional nematic domains. By using conformal mappings, we are able to
compute the director field for a given domain shape that we choose from a rich
class, which includes drops with large and small aspect ratios, and sharp
domain tips as well as smooth ones. Results are assembled in a phase diagram
that for given domain size, surface tension, anchoring strength, and elastic
constant shows the transitions from a homogeneous to a bipolar director field,
from circular to elongated droplets, and from sharp to smooth domain tips. We
find a previously unaccounted regime, where the drop is nearly circular, the
director field bipolar and the tip rounded. We also find that bicircular
director fields, with foci that lie outside the domain, provide a remarkably
accurate description of the optimal director field for a large range of values
of the various shape parameters.Comment: 12 pages, 10 figure
The Absorption Signatures of Dwarf Galaxies: The z=1.04 Multicloud Weak MgII Absorber toward PG 1634+706
We analyze high resolution spectra of a multi--cloud weak [defined as
W_r(MgII) < 0.3 A] absorbing system along the line of sight to PG 1634+706.
This system gives rise to a partial Lyman limit break and absorption in MgII,
SiII, CII, SiIII, SiIV, CIV, and OVI. The lower ionization transitions arise in
two kinematic subsystems with a separation of ~150 km/s. Each subsystem is
resolved into several narrow components, having Doppler widths of 3-10 kms. For
both subsystems, the OVI absorption arises in a separate higher ionization
phase, in regions dominated by bulk motions in the range of 30-40 km/s. The two
OVI absorption profiles are kinematically offset by ~50 km/s with respect to
each of the two lower ionization subsystem. In the stronger subsystem, the
SiIII absorption is strong with a distinctive, smooth profile shape and may
partially arise in shock heated gas. Moreover, the kinematic substructure of
SiIV traces that of the lower ionization MgII, but may be offset by ~3 km/s.
Based upon photoionization models, constrained by the partial Lyman limit
break, we infer a low metallicity of ~0.03 solar for the low ionization gas in
both subsystems. The broader OVI phases have a somewhat higher metallicity, and
they are consistent with photoionization; the profiles are not broad enough to
imply production of OVI through collisional ionization. Various models,
including outer disks, dwarf galaxies, and superwinds, are discussed to account
for the phase structure, metallicity, and kinematics of this absorption system.
We favor an interpretation in which the two subsystems are produced by
condensed clouds far out in the opposite extremes of a multi-layer dwarf galaxy
superwind
Geometry-dependent critical currents in superconducting nanocircuits
In this paper we calculate the critical currents in thin superconducting
strips with sharp right-angle turns, 180-degree turnarounds, and more
complicated geometries, where all the line widths are much smaller than the
Pearl length . We define the critical current as the
current that reduces the Gibbs free-energy barrier to zero. We show that
current crowding, which occurs whenever the current rounds a sharp turn, tends
to reduce the critical current, but we also show that when the radius of
curvature is less than the coherence length this effect is partially
compensated by a radius-of-curvature effect. We propose several patterns with
rounded corners to avoid critical-current reduction due to current crowding.
These results are relevant to superconducting nanowire single-photon detectors,
where they suggest a means of improving the bias conditions and reducing dark
counts. These results also have relevance to normal-metal nanocircuits, as
these patterns can reduce the electrical resistance, electromigration, and hot
spots caused by nonuniform heating.Comment: 29 pages, 24 figure
Transcriptome Analyses of Tumor-Adjacent Somatic Tissues Reveal Genes Co-Expressed with Transposable Elements
Background: Despite the long-held assumption that transposons are normally only expressed in the germ-line, recent evidence shows that transcripts of transposable element (TE) sequences are frequently found in the somatic cells. However, the extent of variation in TE transcript levels across different tissues and different individuals are unknown, and the co-expression between TEs and host gene mRNAs have not been examined. Results: Here we report the variation in TE derived transcript levels across tissues and between individuals observed in the non-tumorous tissues collected for The Cancer Genome Atlas. We found core TE co-expression modules consisting mainly of transposons, showing correlated expression across broad classes of TEs. Despite this co-expression within tissues, there are individual TE loci that exhibit tissue-specific expression patterns, when compared across tissues. The core TE modules were negatively correlated with other gene modules that consisted of immune response genes in interferon signaling. KRAB Zinc Finger Proteins (KZFPs) were over-represented gene members of the TE modules, showing positive correlation across multiple tissues. But we did not find overlap between TE-KZFP pairs that are co-expressed and TE-KZFP pairs that are bound in published ChIP-seq studies. Conclusions: We find unexpected variation in TE derived transcripts, within and across non-tumorous tissues. We describe a broad view of the RNA state for non-tumorous tissues exhibiting higher level of TE transcripts. Tissues with higher level of TE transcripts have a broad range of TEs co-expressed, with high expression of a large number of KZFPs, and lower RNA levels of immune genes
The Population of Weak Mg II Absorbers I. A Survey of 26 QSO HIRES/Keck Spectra
We present a search for "weak" MgII absorbers [those with W_r(2796) < 0.3 A
in the HIRES/Keck spectra of 26 QSOs. We found 30, of which 23 are newly
discovered. The spectra are 80% complete to W_r(2796) = 0.02 A and have a
cumulative redshift path of ~17.2 for the redshift range 0.4 < z < 1.4. The
number of absorbers per unit redshift, dN/dz, is seen to increase as the
equivalent width threshold is decreased; we obtained dN/dz = 1.74+/-0.10 for
our 0.02 <= W_r(2796) < 0.3 A sample. The equivalent width distribution follows
a power law with slope -1.0; there is no turnover down to W_r(2796) = 0.02 A at
= 0.9. Weak absorbers comprise at least 65% of the total MgII absorption
population, which outnumbers Lyman limit systems (LLS) by a factor of
3.8+/-1.1; the majority of weak MgII absorbers must arise in sub-LLS
environments. Tentatively, we predict that ~5% of the Lyman-alpha forest clouds
with W_r(1215) > 0.1 A will have detectable MgII absorption to W_r,min(2796) =
0.02 A and that this is primarily a high-metallicity selection effect (Z/Z_sun]
> -1). This implies that MgII absorbing structures figure prominently as
tracers of sub-LLS environments where gas has been processed by stars. We
compare the number density of W_r(2796) > 0.02 A absorbers with that of both
high and low surface brightness galaxies and find a fiducial absorber size of
35h^-1 to 63h^-1 kpc, depending upon the assumed galaxy population and their
absorption properties. The individual absorbing "clouds" have W_r(2796) <= 0.15
A and their narrow (often unresolved) line widths imply temperatures of ~25,000
K. We measured W_r(1548) from CIV in FOS/HST archival spectra and, based upon
comparisons with FeII, found a range of ionization conditions (low, high, and
multi-phase) in absorbers selected by weak MgII.Comment: Accepted Version: 43 pages, PostScript figures embedded; accepted to
ApJ; updated version includes analysis of CIV absorptio
Periodic Orbits and Escapes in Dynamical Systems
We study the periodic orbits and the escapes in two different dynamical
systems, namely (1) a classical system of two coupled oscillators, and (2) the
Manko-Novikov metric (1992) which is a perturbation of the Kerr metric (a
general relativistic system). We find their simple periodic orbits, their
characteristics and their stability. Then we find their ordered and chaotic
domains. As the energy goes beyond the escape energy, most chaotic orbits
escape. In the first case we consider escapes to infinity, while in the second
case we emphasize escapes to the central "bumpy" black hole. When the energy
reaches its escape value a particular family of periodic orbits reaches an
infinite period and then the family disappears (the orbit escapes). As this
family approaches termination it undergoes an infinity of equal period and
double period bifurcations at transitions from stability to instability and
vice versa. The bifurcating families continue to exist beyond the escape
energy. We study the forms of the phase space for various energies, and the
statistics of the chaotic and escaping orbits. The proportion of these orbits
increases abruptly as the energy goes beyond the escape energy.Comment: 28 pages, 23 figures, accepted in "Celestial Mechanics and Dynamical
Astronomy
Semiquantum versus semiclassical mechanics for simple nonlinear systems
Quantum mechanics has been formulated in phase space, with the Wigner function as the representative of the quantum density operator, and classical mechanics has been formulated in Hilbert space, with the Groenewold operator as the representative of the classical Liouville density function. Semiclassical approximations to the quantum evolution of the Wigner function have been defined, enabling the quantum evolution to be approached from a classical starting point. Now analogous semiquantum approximations to the classical evolution of the Groenewold operator are defined, enabling the classical evolution to be approached from a quantum starting point. Simple nonlinear systems with one degree of freedom are considered, whose Hamiltonians are polynomials in the Hamiltonian of the simple harmonic oscillator. The behavior of expectation values of simple observables and of eigenvalues of the Groenewold operator are calculated numerically and compared for the various semiclassical and semiquantum approximations
Analytic approach to bifurcation cascades in a class of generalized H\'enon-Heiles potentials
We derive stability traces of bifurcating orbits in H\'enon-Heiles potentials
near their saddlesComment: LaTeX revtex4, 38 pages, 7 PostScript figures, 2 table
Non variability of intervening absorbers observed in the UVES spectra of the "naked-eye" GRB080319
The aim of this paper is to investigate the properties of the intervening
absorbers lying along the line of sight of Gamma-Ray Burst (GRB) 080319B
through the analysis of its optical absorption features. To this purpose, we
analyze a multi-epoch, high resolution spectroscopic observations (R=40000,
corresponding to 7.5 km/s) of the optical afterglow of GRB080319B (z=0.937),
taken with UVES at the VLT. Thanks to the rapid response mode (RRM), we
observed the afterglow just 8m:30s after the GRB onset when the magnitude was R
~ 12. This allowed us to obtain the best signal-to-noise, high resolution
spectrum of a GRB afterglow ever (S/N per resolution element ~ 50). Two further
RRM and target of opportunity observations were obtained starting 1.0 and 2.4
hours after the event, respectively. Four MgII absorption systems lying along
the line of sight to the afterglow have been detected in the redshift range 0.5
< z < 0.8, most of them showing a complex structure featuring several
components. Absorptions due to FeII, MgI and MnII are also present; they appear
in four, two and one intervening absorbers, respectively. One out of four
systems show a MgII2796 rest frame equivalent width larger than 1A. This
confirms the excess of strong MgII absorbers compared to quasars, with dn/dz =
0.9, ~ 4 times larger than the one observed along quasar lines of sight. In
addition, the analysis of multi-epoch, high-resolution spectra allowed us to
exclude a significant variability in the column density of the single
components of each absorber. Combining this result with estimates of the size
of the emitting region, we can reject the hypothesis that the difference
between GRB and QSO MgII absorbers is due to a different size of the emitting
regions.Comment: 10 pages, 15 ps figures, submitted to MNRA
- …