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MATHEMATICS The function L is continuous on O<x<oo, and slowly oscillating.
That is, L(x) 0 for all x 0, and for each fixed q> 0 we have L(qx)/L(x) —~ 1
if x —~- oo. It is a well-known consequence that this holds uniformly with

INCOMPLETE SUMS OF MULTIPLICATIVE FUNCTIONS. II respect to q in every interval ô<q<M, provided that 0 ô M co (see

BY [4], [5]).
The numbers a and b satisfy a>O, b>O.

N. G. BE BRTJIJN AND J. H. VAN LINT Throughout the paper, 2, L, a, b, are fixed. That is, numbers depending

only on 2, L, a, b, are called constants, and none of our statements is
(Communicated at the meeting of 27 June, 1964) intended to hold uniformly with respect to 2, L, a, b.

1. Introduction B. For every fixed u 1 we have

In part I we discussed the sum (1.5) lim ~ 2(p) blog a,
v—~ ii i’ ii”

(1.1) A(x, y) = ~ 2(n) where p runs through the primes.
n~z.P(n)~y

where 2(n) is a multiplicative function and P(n) denotes the largest C. For y —* oc we have
prime factor of n. Our main assumptions were that 2(n) 0 for all n
and that for some b 0 and all u 1 we have (1.5) (see sec. 1.1 below). (1.6) ~ 2(n) n~ a lbye(log y)b 1 L(log y).fly

With some additional (very weak) conditions for 2(n) we proved that
D. For every fixed i 2 and every fixed u 1 we have

(1.2) A(yU, y) O&(u) ~ 2(n) (y >

(1.7) Jim ~ 2(p~) 0.
uniformly for u 6 0. For the definition of Ob(u), properties and further p

background material we refer to part I. We also proved that E. If 0 b 1 the following condition holds: for every i (i 1, 2, 3, ...)

(1.3) ~ 2(n) (log y)b L(log ~), there is a constant C~ such that
nil

(1.8) ~ 2(p~) C~ (logy) (2 y oo).
where L is a slowly oscillating continuous function. ~ ~

In this paper we use a different method to discuss
1.2 Notations

(1.4) A~(x, y) = ~ 2(n) ~a
n~x.P(n) ii For Aa see (1.4), for P(n) see (1.1), for ~(u) see sec. 2. ø(y, u) is an

with a 0. Although it is exceptional in some respects, we might include abbreviation:
a 0 in our present discussion, but we shall not do this, because it would (1.9) ~(y, u) yau(log y)b 1 L(log y).
not produce results as strong as those obtained in part I. In this part II
we shall not obtain a result of the type (1.3), but we shall take a formula A phrase like C C(6) means: C may depend on 6, on 2, L, a, b, but not
of that type as one of our assumptions. (See C below.) Moreover we have on any other parameters or functions.
to exclude the case b 0. If p is used as a summation index it is assumed to run through prime

As in part I we must impose some rather light conditions on 2 in order iiumbers only.
to guarantee that prime powers pi (i 1) have little influence. (See under
D and E). 1.3 The main theorem

Finally we need an extra restriction on 2 in the case that 0 b 1 (see E). Let A, B, C, D, E hold. Let 6 and M be constants, 0 6 M. Then
we have, if y —* 00,

1.1 Assumptions
(1.10) Aa(yu, y) ~ a ‘b ~(u) yau(log y)~’ L(log y),

A. The function 2 is multiplicative (i.e. 2(nm) 2(n)2(m) if m and n
are co-prime positive integers), and 2(n) 0 for all n. uniformly for 6 u M (for ~ see sec. 2).
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1.4 Remarks whence pi does not divide n if i u. Therefore the right-hand side of

In the case a 0, b 0 (part I) we had a similar, though simpler, result, (3.1) equals
~ 2(p~) pai 2(m) ma,

V V 2/ 1 1 U m 2/V ~.Pm) v
(1.11) A(yU, y) ‘~ Ob(U) (log y)b L(log I!). whence

Note that ,~(u) b 1 Ob’(u) (see sec. 2).
The constant a ‘b in (1.6) and (1.10) is irrelevant, of course, since (3.2) Aa(y~’, y”) Aa(y~’, y) ~ 2(pi)paiAa(yup 1,p 1)1~i<u V<V~2/

a ‘b L is also a slowly oscillating function. We only introduced this
factor in order to keep (1.6) in harmony with (1.3), as (1.3) can be obtained for all u, y, v with u> 0, y> 1, v> 1.
from (1.6) by a process of summation by parts. In our proof of the main theorem it will turn out that the terms with

In assumption E we require (1.8) only if 0 b 1. If b 1 we do not i 1 are negligible.
need this extra condition. It is not difficult to see from our proofs that
(1.8) is not needed either if l~ 1, L 1, but we did not stress this fact 4. Some lemmas
in the form of a theorem. Our first lemma deals with uniform Riemann integrability. We consider

2. The function a function f~(x) defined for ~ x ~, depending on the parameter u
(CX u ~9). If we have a dissection of the interval [~, ~y], given by

For u 0 the function ,~ is uniquely defined by the following set of
conditions: (4.1) ... <xn

(i) ~i(u) is continuous for u>0, then we define the lower step-function 81u for ~<x<~ by
(ii) ,2(u)=ub—l for 0<u<1,

(iii) u~’(u)=(b—1)~j(u)—b~7(u—1) for u 1. si~(x) inf f~(y) (xi i<x<xi),
~l 1 V Xj

This differential-difference equation can be written in the following
integral form. If ~> 1, we have for u 1 and the upper step-function ~2u similarly, with sup instead of inf.

We shall say that f~ is uniformly Riemarm integrable over ~ x
U

(2.1) ~(u) = (u/cx)b—l ~~(ix) b $ ,7(ux-1_1)xb 2dx for x<u<j9, if /~(x) is bounded on that rectangle, and if, moreover,
1 for every s>0 there is a ô 0 such that for every dissection of [~, ~]

The equivalence of (iii) and (2.1) is easily verified if we write (2.1) with maximal interval length less than ô and for all u in [cx, ~9] we have
in the form

$ {(v b ~~(v))’ b v i~(v 1)} dv 0. (s~u(x) si~(x)) dx

It is in the form (2.1) that the equation for ,~ will arise in a natural The latter formula implies that the so-called upper and lower sums
way in our proof. differ less than e from the integral of f~2 uniformly with respect to u.

It is not difficult to derive from (i), (ii), (iii) that 77(u) b 1 Ob’(u) if
u 0, where °b is the function occurring in (1.2) (it is characterized by Lemma 1. Assume 0<E<~ 0<c~<j9, b>0. Let 2(p) be defined
Ob(U) ub (0 u 1), u Ob’(U) b Ob(U) b Ob(u—l) (u> 1), eb continuous and 0 for all primes, and assume B. Let fu(x) be Riemann integrable
for u 0). over [~, ~], uniformly with respect to u (cx <u ~ fi). Put

3. The functional equation for Aa(x, y) ~ 2() (log p’1f~ S[f~].logy
If v> 1, y 1, then we have by (1.4),

Then we have
(3.1) A~(yU, y°) Aa(yu, y) ~‘ 2(n) n’2~

2/ (4.2) limS[fu] b$f~(x)x ‘dx,

where the dash indicates that only those n are admitted whose largest
prime factor p satisfies y p yV. For such a prime factor we have pu yu, uniformly with respect to u (cx u j9).
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Proof. If the dissection (4.1) is fixed (not depending on u or y),
we easily derive from B that for y -+ cc

limS’[si~] bfSiu(X)X ‘dx,

uniformly with respect to u, since si~ is uniformly bounded. Needless
to say, we have a similar result for 82u.

Let r 0 be given. By virtue of the uniform integrability we can take
the dissection (4.1) such that

b I (S2U(X) Sju(X)) x ~ dx ~

for all u simultaneously (x u f3). (Note that the factor x 1 is at most
~ 1.) Next take yo such that for all y ye the difference between S [Sj~]

and the right-hand side of (4.3) is less than e/4, for all u simultaneously,
and such that the analogous statement is true for the upper sum S2?~.

As 2(p) 0 for all p, we have

S[Si~] S[/u] S[82u],

S[/~] b$fu(x)x ‘dx e,

uniformly for x u ~9. This proves the lemma.

Lemma 2. Assume A, B, E. Let the number i~ satisfy 0<~9<b if
0 b 1, and 1< ~ < b if b> 1. Put y fi in the first case, y = — 1 in the
second case. (So always y> 0.) Then there is a positive constant C C(19)
such that for all y> 1 and for all ~ (0< r < ~) we have

‘1o~ (~,/,~\fl—1
~ 2(r) ( b ~~iir~ <C8~’.
~ ~ logy /

Proof. a) If 1 <~8<b, the terms are at most 2(p) eP 1, so for 0 e -~

(4.4) follows from the fact that

P V

is bounded (by B it has a finite limit).

b) Assume 0</~<b< 1, y> 1, 0<~<~, and let N be the smallest
integer such that 2N > y~. We enlarge the sum in (4.4) by replacing the
interval y1~<p<~y by 2-Ny<p<~y. Next we split this one into the
intervals 2—ky <p < 2—k+ly (k = 2, ..., N). On each one of these intervals
we have

(log (y/p))8’ < (k log 2)~ 1,

~ 2(p) (log (y/p))fl~ < ~ (klog2)~1Ci/(log(2 Ny)).

v k=~2

(4.3)

and it follows that

(4.4)

If y is large enough we have 2 Ny y1. As fi Owe have ~ 1 0(N).
Finally (N 1) log 2 r log y, by the definition of N. It follows that the
right-hand side of (4.5) is less than a constant times e~(log y) 1 and
(4.4) follows.

Lemma 3. Let L be a continuous slowly oscillating function defined
for x ~. Then for any ~> 0 there exists a positive number C C(ö) such
that for all Xi, X2 with ~ <x, <x2 we have

(4.6) IL(xi)/L(x2)I < C(ô) (x2 xi)~.

For a proof we refer to [5], [6].

Our main theorem will be proved in sec. 5 by induction. The first
step of this induction is the following lemma.

Lemma 4. Assume A, B, C, E. Let M be any number 1. Then
as y cc we have, uniformly for 1 u

V VV~fl ~2(n)nt~
(4.7)

~(y,u) {a ‘b2$(u x)b—lx ‘dx o(1)}.

Proof. We fix a number fi satisfying the conditions mentioned in
lemma 2 and we take ô=b—19, so ô>0. With this ô we apply lemma 3.
If 2 yU p y we can take xi=yu/p, x2=y, whence

(4 g\ (log (yU ~)\~b1 L(log (yU/p)) C(~\ (log (yU ~ 1
~ log y I L(log y) ‘ \. log y )

It follows by C that if 2 <y2~/p <y, we have the following rough estimate:
there is a constant C with

(4.9) ~ 2(n)n~ Cp
fl~V/P gy

If 1 <yu/p <2 this estimate is not efficient; in that case we just use that
the left-hand side of (4.9) equals unity.

The total contribution to the left-hand side of (4.7) produced by those
p for which both y p yU and 1 yU p 2 hold, is relatively small.
This contribution is at most

~ 2(p)p~,
111” <71 ~ 1)”

and by E this is less than Ci yau/log y if u 1, y 2. By lemma 3 we have
(L(log y))’ = o((log y)b), since b is positive. It follows that the contribution
of the p with y<p<yU, l<yU/p<2 is o(~(y, u)), uniformly with respect
to u.

whence, by E,

(4.5)
Next choose an ~, O<8<M~, and consider the total contribution of
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those p for which both y p yU and y(l-E)u <p < *yU hold. For these Pro of. We shall use the letter q as a summation index running
terms we use (4.9), producing at most through all numbers pi (i fixed, p prime).

/log (yU/p) #-i The inner sum in (4.14) is certainly zero if yU pi 1, 50 the left-handç logy ) ‘ side of (4.14) equals

(4.15) ~ A(q)qa ~ A(n)na,and this is at most C ~“ ~(y, u) according to lemma 2, with a new constant ~ a~v~ n a
C C(j9).

Finally we take the terms for which simultaneously (so this is zero for u<i).
Next we remark that if e, ‘~, a, j9, fu satisfy the conditions of lemma 1,

(4.10) y p yU p y(l-E)U. then

We remark that C now gives (4.16) lim ~ 2(q) iu 0,
i~log y

(4.11) ~ 2(n)n’ ~ a lbyaUp a(log(yu/p))b ‘L(logy),

uniformly for a u fi. The fact that the q are not prime is of no concern
if y —~- 00, uniformly with respect to p and u (p restricted by (4.10), U in the proof of that lemma: the lemma can still be used to show that
by 1<u<M). Note that L(log y) ‘~‘ L(log (yU/p)), since (by (4.10) and our assumption D, i.e.
1<u<M) lim ~ 2(q) 0

e log y log (yU p) M log y. ?I-~Oo ~, q

It does not do any harm to replace in (4.7) the expression on the left- (for every fixed u 1) leads to (4.16). (This means specializing b in lemma 1
hand side of (4.11) by the one on the right-hand side of (4.11). We then to b 0, but this is not the same b we have in our present lemma 5: the
obtain as the contribution of the terms restricted by (4.10): b occurring in assumption C is positive according to A.)

(log p) A further preparatory remark is that lemma 2 and its proof remain
(4.12) a-’ b ø(y’ u) ~ 2(P) fu ‘ true if we replace p by q, provided that ~1,~<a 2(q) is bounded, and

~, < ~,
this is certainly the case because it has limit 0, by D.

where /u(x) is defined for 1 <x < M, 1 <u < M by We can now prove lemma 5 by repetition of the proof of lemma 4,

= (u_x)b—l if 1 <x < (1—e)u, replacing p’s by q’s. There are two minor differences:

f~(x) = 0 if x> (1—e)U. (i) The summation in (4.15) runs from y~ onward instead of from y

(Note that for 1 u (1 e) 1 we have /~(x) 0 for all x, and, accordingly, onward. This gives no trouble, we can first show that the sum with
the sum (4.12) is empty in that case.) Y q yu iS o(ø(y, u)), and then remark that (4.15) is even less.

Now lemma 1 provides the asymptotic behaviour of (4.12). It results (ii) In (4.13) we have to replace a ‘b f~ fu(x) x 1 dx by zero.
that the left-hand side of (4.7) is

M 5. The main theorem
(4.13) ø(y,u) (a ‘b2 Sfu@~)x ‘dx R},

1 We shall now prove the theorem announced in sec. 1.3.

where lim supa R C e~, uniformly with respect to u (1 U M). If 0< ~5 <M < 1, the result is a direct consequence of C, since ~~(u) ub 1

As finally (0< b < 1) and since
M

lim $ /u(x) x ‘dx $ (u x)b 1 x 1 dx, (5.1) Aa(yU, y) ~ 2(n) n5 (0<u< 1).
e—~O 1 1

uniformly with respect to u (1 u M), the lemma follows. It has to be noted that L(log yU)/L(log y) —* 1 uniformly for ~ u M.

Lemma 5. Assume A, C, D, E. Let i be a fixed integer 1 and let Next we prove the theorem for 0<~<M, 1<M~2. By (3.2) we have,
M be any number >1. Then we have if 1 u 2

Aa(y~’, y) Aa(yu, yU) ~ A(p) pa ~ 2(n) na,(4.14) ~ 2(p~)p~ ~ 1(n)n~ o(ø(y,u))
a

uniformly for 1< u < M. since the terms with i 1 do not give a contribution here (p y implies
24 Series A
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p2 yU). Applying C to Aa(yU, yU) (see (5.1)) and then lemma 4, to the
double sum, we obtain

Aa(yU, y)/~(yU, y) = a’ b {ub 1 b $ (u x)b 1 x 1 dx o(l)},

uniformly for 1 <u< 2. Since (2.1) (with c 1) gives

ub ~ b$(u x)b 1x ‘dx ‘ii(u) (1 u 2),

we have now proved the theorem for M 2.
We proceed by induction. Assuming that the theorem has been proved

for a certain M 2, we show that it is correct for M replaced by M’ = M + ~-,

i.e. we show that (1.10) holds uniformly for M<u<M+~.
We apply (3.2) with v

Aa(yU,y) = ~ A(p~)p~ Aa(yU/p~,p_1).
1~i<u

Aa(yUIp~, p — 1) ~ 2(n) na,
n ~

and so, by lemma 5, the contribution of each fixed i 1 to the right-
hand side is o(~i(y, u)), uniformly for 1 <u<M+I. We have to consider
at most M ~ different values of i, so their total contribution is o(ø(y, u)),
and we can restrict ourselves to the remaining terms with i = 1.

For the values of u and p under consideration (M <U < M + ~, y <p <yu/2)

log (yU 2~ (u 1) logp (M ~) logp M
2 log(p 1) log(p 1) log(p 1)

for all y exceeding a certain constant 0 0(M). Hence we may apply
the induction hypothesis:

= {1 +o(1)} a-l b (l~~ (Y 1)) yaup a(log (p 1))b ‘L(log (p 1))

{1 o(1)}a ‘b~(u~-~ 1’~ø(y,u)(logp~ ‘
\ logp / pa \logy/

uniformly for M u M ~. (Note that ~ is uniformly continuous and
positive on [~, M]; moreover log (p 1) log y lies between -~ and ~-M ~,
whence L(log (p 1)) may be replaced by L(log y).

As (1.10) has already been proved for u 2 we have
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uniformly for M<u<M+~. So it follows from (5.2) that

Aa(yU, y)/’l~(y, u) a—1 b ~(2) (~u)b 1

I loov \ /Jogv\b 1
—a’b ~ 2(p) ?71u— 11 o(1)~ 1—1

\ logp j j \logp/

uniformly for M u<M+~-.
We now apply lemma 1 with ~= 1,~ x=M, 13=M+~, and

f’q(ux ‘ 1)xb 1 if 1 x<~u,

0 if ~u x < ~M ~‘

Aa(yu, y)/Ø(y, u)

a lb~(2)(~u)b 1 a 1b2 IU?1(ux 1 1)xb 2dx 0(1),

uniformly for M<u<M+~. By (2.1) (with ~x 2) the right-hand side
is a ‘b ~(u)+o(1), and this completes the induction step.

6. Applications

6.1 If 2(n) n 1 for all n, and if a 1 b 1 the conditions of our theorem
are satisfied, with L 1. The result is that if ~I’(x, y) is the number of
integers x, free of prime factors y then W(yU, y) ~(u)yu (u fixed,
y —÷ oo). This result was first obtained by A. A. BuCHsTAB [8], and
extended to cases where u —* oo in [1].

6.2 In Part I ( [7]) we proved

(6.1) ~ ~2(~) (9(d)) 1 ~ O,(u) logy.
Pd y,d ii”

Inserting an extra factor d, we now obtain from our present theorem
(see (1.10))

(6.2) ~ ~2(d)d(~(d)) 1 ~(u)yu

if u>-0 is fixed, y -÷ 00. In this case we have 2(n) ~2(n)/q,(n), a 1
b= 1, L —_ 1. We omit a detailed verification of the conditions A, B, C
D, E; A and D are trivial, B and E depend on the fact that the expression

xP 1 log logx

has a limit if x —~ oc; for C we need

~fL2(n) n(92(n)) 1 ~

The latter relation can be seen, for example, from the identity

00 11
~2(n)n(~(n)) inS ~(s)fl(1+~_

(5.2) Aa(yu, yU 2)

We have

This leads to

we have

Aa(y?~/p,p_1) =

p1
p lp2SAa(y~’, yU 2) c—.’ a ‘b ~j(2) (~u)b 1 ~i(y, u),
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where the infinite prodnct can be expanded into a Dirichlet series which In order to prove that 0 is a slowly oscillating function of log x we
converges absolutely for s 4 and has the value 1 at a 1. must show that

6.3 If we define the multiplicative function 2 by 2(n) (n d(n)) 1, where lim H {1 (p 1) 1 (log logp) 1} 1x—*oo z<vi~z’

d(n) stands for the number of divisors of n, then we have by [10]
for every c> 1, and to show this it is sufficient to show that

~ 2(n) n ~ (d(n)) 1 i~s ~ x(log x) ~,

Z~ 1 cIt
limf

with a certain positive constant c. The function 2 evidently satisfies ~ t log log t ~ 0
conditions A, B, C, D, E with a 1, b = 4, L c. Therefore by (1.10) for every e 1. (Here the prime number theorem is applied in the familiar
we have way.) This is verified by straightforward calculation.

~ ~i2(n) (d(n)) 1 ,-.~ c ,2(u) yU(log y) Also, it is easy to see that L(x) —± cc if x —> cc.
Pd v.d is”

where n is the function defined in sec. 2 with b ~ Thus we have given an example of a multiplicative function 2, satisfying

6.4 Another example with b 4 is found by defining A, B, C, B, E with a 1, b 0 and L is a slowly oscillating function which
is not a constant (not even asymptotically). We omit the simple yen

(i) 2(pt) 0 if i 1,3,5, ...; p 3 (mod4), fication of A, B, C, D, E.

(ii) 2(pt) p otherwise, Technological University, Eincthoven

(iii) 2 multiplicative. Netherinn~

It is well-known that for n 1 we have n2(n) 1 if n is the sum of two
squares, n2(n) 0 otherwise. Thus we have in this case

REFERENCESAi(yu,y) ~ 2(n)n ~‘ 1,
n is” V’• ‘ ‘ v (References 1, 2, 3 are the same as in part I, the others are in alphabetical order)

where the dash indicates that n is omitted if n is not the sum of two 1. ~ N. 0. PT, On the number of positive integers x and free of prime
factors > y, Nederl. Akad. Wetensch. Proc. 5cr. A 54 ( Indagationes

squares. Mathematicae 13) 50 60 (1951).

For the partial sums we have 2. LINT, S. H. v4n and H. E. Rjcnrntr, fiber die Summe Zn<xP(x~<y p2(n) 9(n),

~ 2(n) n t—s ~ x(log x) ~ Nederl. Akad. Wetensch. Proc. Ser. A 67 (=Indagationes Mathe
n z maticae 26) No. 5 (1964).

where c {2 H~ a (mod ~ (1 p 2)} I (cf. [9], § 176), and the verification 3. KAaAMATA, S., Uber die Hardy-Littlewoodschen Umkehrungen des Abelschen
e Stetigkeitssatzes, Math. Zeit. 32, 319 320 (1930).of A, B, C, B E (with a=1, b=4, L c) is easy. So by (1.10) we hay 4. AARDENNE—EmtENFE5T, T. v~ii, N. 0. PE BRuIJN and S. Koxzvns, A note

Ai(yU, y) i--s c ~(u) yU(log Y)~ on slowly oscillating functions, Nieuw Arch. Wisk. 23, 77 86 (1949).
5. Boa~xc, R. and S. KAxatTA, On slowly varying functions and asymptotic

with the same function tj as in example 2. relations, MRC Technical Summary Report # 432 (1963).
6. BRuxJN, N. 0. DE and P. Exnos, On a recursion formula and some tauberian

6.5 In all previous examples the function L occurring in our theorem theorems, J. Res. Nat. Bur. Stand. 50, 161 164 (1953).

was constant. It is not difficult to construct an example where this is 7. and S. H. v~ LINT, Incomplete sums of multiplicative functions I,

not the case. We define Nederl. Akad. Wetensch. Proc. Ser. A 67 ( Indagationes Mathe
maticae 26) 339—347 (1964).

(i) p2(p) 1 (log log p) 1 if p 2, 8. BucssTKe, A. A., On those numbers in an arithmetic progression all prime

(ii) 2(pt) 0 if p 2 or i 2, factors of which are small in magnitude, Doklady Akad. Nauk.
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