1,450 research outputs found

    A macroscopic crowd motion model of gradient flow type

    Full text link
    A simple model to handle the flow of people in emergency evacuation situations is considered: at every point x, the velocity U(x) that individuals at x would like to realize is given. Yet, the incompressibility constraint prevents this velocity field to be realized and the actual velocity is the projection of the desired one onto the set of admissible velocities. Instead of looking at a microscopic setting (where individuals are represented by rigid discs), here the macroscopic approach is investigated, where the unknwon is the evolution of the density . If a gradient structure is given, say U is the opposite of the gradient of D where D is, for instance, the distance to the exit door, the problem is presented as a Gradient Flow in the Wasserstein space of probability measures. The functional which gives the Gradient Flow is neither finitely valued (since it takes into account the constraints on the density), nor geodesically convex, which requires for an ad-hoc study of the convergence of a discrete scheme

    Mathematical existence results for the Doi-Edwards polymer model

    Get PDF
    In this paper, we present some mathematical results on the Doi-Edwards model describing the dynamics of flexible polymers in melts and concentrated solutions. This model, developed in the late 1970s, has been used and tested extensively in modeling and simulation of polymer flows. From a mathematical point of view, the Doi-Edwards model consists in a strong coupling between the Navier-Stokes equations and a highly nonlinear constitutive law. The aim of this article is to provide a rigorous proof of the well-posedness of the Doi-Edwards model, namely it has a unique regular solution. We also prove, which is generally much more difficult for flows of viscoelastic type, that the solution is global in time in the two dimensional case, without any restriction on the smallness of the data.Comment: 48 page

    Global existence results for some viscoelastic models with an integral constitutive law

    Get PDF
    We provide a proof of global regularity of solutions of some models of viscoelastic flow with an integral constitutive law, in the two spatial dimensions and in a periodic domain. Models that are included in these results are classical models for flow memory: for instance some K-BKZ models, the PSM model or the Wagner model. The proof is based on the fact that these models naturally give a L∞L^\infty-bound on the stress and that they allow to control the spatial gradient of the stress. The main result does not cover the case of the Oldroyd-B model

    Convergence to the Reynolds approximation with a double effect of roughness

    Get PDF
    We prove that the lubrication approximation is perturbed by a non-regular roughness of the boundary. We show how the flow may be accelerated using adequate rugosity profiles on the bottom. We explicit the possible effects of some abrupt changes in the profile. The limit system is mathematically justified through a variant of the notion of two-scale convergence. Finally, we present some numerical results, illustrating the limit system in the three-dimensional case

    Low-Thrust Lyapunov to Lyapunov and Halo to Halo with L2L^2-Minimization

    Get PDF
    In this work, we develop a new method to design energy minimum low-thrust missions (L2-minimization). In the Circular Restricted Three Body Problem, the knowledge of invariant manifolds helps us initialize an indirect method solving a transfer mission between periodic Lyapunov orbits. Indeed, using the PMP, the optimal control problem is solved using Newton-like algorithms finding the zero of a shooting function. To compute a Lyapunov to Lyapunov mission, we first compute an admissible trajectory using a heteroclinic orbit between the two periodic orbits. It is then used to initialize a multiple shooting method in order to release the constraint. We finally optimize the terminal points on the periodic orbits. Moreover, we use continuation methods on position and on thrust, in order to gain robustness. A more general Halo to Halo mission, with different energies, is computed in the last section without heteroclinic orbits but using invariant manifolds to initialize shooting methods with a similar approach

    Viscoroute 2.0: a tool for the simulation of moving load effects on asphalt pavement

    Full text link
    As shown by strains measured on full scale experimental aircraft structures, traffic of slow-moving multiple loads leads to asymmetric transverse strains that can be higher than longitudinal strains at the bottom of asphalt pavement layers. To analyze this effect, a model and a software called ViscoRoute have been developed. In these tools, the structure is represented by a multilayered half-space, the thermo-viscoelastic behaviour of asphalt layers is accounted by the Huet-Sayegh rheological law and loads are assumed to move at constant speed. First, the paper presents a comparison of results obtained with ViscoRoute to results stemming from the specialized literature. For thick asphalt pavement and several configurations of moving loads, other ViscoRoute simulations confirm that it is necessary to incorporate viscoelastic effects in the modelling to well predict the pavement behaviour and to anticipate possible damages in the structure.Comment: 27 pages

    Roughness effect on the Neumann boundary condition

    Get PDF
    36 pagesInternational audienceWe study the effect of a periodic roughness on a Neumann boundary condition. We show that, as in the case of a Dirichlet boundary condition, it is possible to approach this condition by a more complex law on a domain without rugosity, called wall law. This approach is however different from that usually used in Dirichlet case. In particular, we show that this wall law can be explicitly written using an energy developed in the roughness boundary layer. The first part deals with the case of a Laplace operator in a simple domain but many more general results are next given: when the domain or the operator are more complex, or with Robin-Fourier boundary conditions. Some numerical illustrations are used to obtain magnitudes for the coefficients appearing in the new wall laws. Finally, these wall laws can be interpreted using a fictive boundary without rugosity. That allows to give an application to the water waves equation

    Handling congestion in crowd motion modeling

    Full text link
    We address here the issue of congestion in the modeling of crowd motion, in the non-smooth framework: contacts between people are not anticipated and avoided, they actually occur, and they are explicitly taken into account in the model. We limit our approach to very basic principles in terms of behavior, to focus on the particular problems raised by the non-smooth character of the models. We consider that individuals tend to move according to a desired, or spontanous, velocity. We account for congestion by assuming that the evolution realizes at each time an instantaneous balance between individual tendencies and global constraints (overlapping is forbidden): the actual velocity is defined as the closest to the desired velocity among all admissible ones, in a least square sense. We develop those principles in the microscopic and macroscopic settings, and we present how the framework of Wasserstein distance between measures allows to recover the sweeping process nature of the problem on the macroscopic level, which makes it possible to obtain existence results in spite of the non-smooth character of the evolution process. Micro and macro approaches are compared, and we investigate the similarities together with deep differences of those two levels of description
    • …
    corecore