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Roughness effect on the Neumann

boundary condition

Laurent Chupin 1

Abstract

We study the effect of a periodic roughness on a Neumann boundary

condition. We show that, as in the case of a Dirichlet boundary condi-

tion, it is possible to approach this condition by a more complex law on

a domain without rugosity, called wall law. This approach is however

different from that usually used in Dirichlet case. In particular, we show

that this wall law can be explicitly written using an energy developed

in the roughness boundary layer. The first part deals with the case of

a Laplace operator in a simple domain but many more general results

are next given: when the domain or the operator are more complex, or

with Robin-Fourier boundary conditions. Some numerical illustrations are

used to obtain magnitudes for the coefficients appearing in the new wall

laws. Finally, these wall laws can be interpreted using a fictive boundary

without rugosity. That allows to give an application to the water waves

equation.

Key words: Neumann boundary condition, Asymptotic development, Rough
boundaries, Hight order approximation, Wall laws, Laplace equation, Water
wave, Dirichlet-Neumann operator.

1 Introduction

The understanding of roughness induced effects has been the topic of many re-
cent papers like [1, 2, 4, 6, 7, 13, 14, 15, 18]. In all these papers, the main goal
is to understand how to approach a Dirichlet boundary condition on a rough
surface using a new boundary condition on a smooth equivalent surface. From
a physical point of view, these studies allow to justify the Navier law for fluid
flow modeled by the Navier-Stokes equations.

Concerning the Neumann boundary conditions there exist far fewer results.
Some results, however, treat such boundary conditions in slightly different con-
texts. For instance in [5], the authors are interested in the presence of small
inclusions which modifies the solution of the Laplace equation, the boundary
condition on the inclusion being of Neumann type. In [12], the Neumann prob-
lem in a two-dimensional domain with a narrow slit is studied. In these two
articles [5] and [12] the geometry of the perturbation is really different from
the problem of the present paper. In the framework of fluid mechanic and the
Navier-Stokes equations, the natural alternative to Dirichlet (no-slip) condition
is the Navier (slip) condition. Starting from the Navier condition on a rough
surface, Anne-Laure Dalibard and David Gérard-Varet [11] recently give error
estimates for the homogenized no-slip condition and provide an accurate ef-
fective boundary condition of Navier type again. The problem studied in the
present paper is different because, for example, the solution to a Stokes system
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on a half-space with a Navier boundary condition does not behave like a solution
to the Laplace system on a half-space with a Neumann boundary condition (for
instance, the solution is defined up to an additive constant in the latter case).

In [21], the authors show that it is possible to replace Dirichlet or Neumann con-
ditions on a embossed surface by approximate effective conditions on a smooth
surface. The authors give explicit expressions for the effective boundary condi-
tion in the “dilute limit”, that is when the area fraction covered by the bosses
are small. For the Neumann problem, they find that the normal derivative on a
smooth surface equals a suitable combination of first- and second-order deriva-
tives (the exact formulae is given by equation (128), p. 446, or by equation (74),
p. 436, for “simple” bosses). Their method consists in represent the solution
to the Laplace equation in the embossed surface as a sum of solution to the
Laplace equation in the smooth domain and in each bosses. Finally, in the last
part of their article, p. 447, the authors note that it would be appropriate to
consider the finite-concentration case (and note only the dilute limit). In some
sense, the present paper answers this question.

More precisely, this paper is organized as follows.
- In the section 2, we study the roughness induced effects on the solution of

the Laplace equation in a flat domain with roughness, taking into account the
homogeneous Neumann boundary condition on the rough part of the bound-
ary. The beginning of this section 2 provides an opportunity to present the
notations used, to recall the results concerning the case of Dirichlet boundary
conditions and to present the main results of this section (subsection 2.1). We
give in the subsection 2.2 the main proofs of this section. The method follows
the main ideas developed in [9] for thin film approximation with roughness-
induced correctors. The subsection 2.3 shows that the study can be generalized
to more complex boundary conditions such as the Robin-Fourier type boundary
conditions. Finally numerical results (subsection 2.4) give some quantitative in-
formations on the new wall law and validate this effective boundary condition.

- The section 3 is devoted to obtain the same kind of result for more complex
domains (that is for a non-flat domain with roughness). The principle of this
part is to make a change of variables to reduce to the case of a flat domain.
Of course the Laplace equation in this new domain becomes an equation whose
coefficients reflect the initial geometry. The purpose of the subsection 3.3 is to
show that the study of the section 2 remains valid in such cases. In the last sec-
tion 3.4, we show how our results can be used in the context of water waves. In
particular we show the effect of roughness on an operator of Dirichlet-Neumann
type. This allows to give some answers to the following question: what is the
impact of boulders at the bottom of the ocean on the form of surface waves ?
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2 Laplace equation in a flat domain with rough-

ness

2.1 Notations and main results

2.1.1 Notations

In this section, we are interested in the behavior of the solution to the Laplace
equation on a rough simple domain Ωε. More precisely, the domain Ωε is defined
by (see Figure 1)

Ωε =
{

(x, y) ∈ R
d−1 × R ; − εh

(x
ε

)
< y < 1

}
,

and its boundaries are noted Γ+ and Γ−
ε :

Γ+ =
{

(x, y) ∈ R
d−1 × R ; y = 1

}
,

Γ−
ε =

{
(x, y) ∈ R

d−1 × R ; y = −εh
(x
ε

)}
.

Throughout this paper, the function h defining the roughness at the bottom of
the domain is assumed to be periodic (with period equals to 1). Moreover, all
constants not depending on the parameter ε will be considered harmless, and
we shall denote by A . B any inequality A ≤ CB where C is such a constant.
In the sequel we assume for sake of simplicity that d = 2 but all the results
are valid for any dimension d ≥ 2. In the same way the results presented here
assume that x ∈ R

d−1 but same results are valid for x ∈ T
d−1, that is for

periodic conditions with respect to the horizontal variable.

The case of a Laplace equation with Dirichlet type boundary conditions has been
extensively studied (we also recall the main results in the next section). The
purpose of this paper is to propose a similar approach in the case of Neumann
boundary conditions, which is, as we shall see, really different from what has
been done before. More exactly, we are interested in the following problem





∆ϕ = 0 on Ωε,

ϕ = f on Γ+,

∂nϕ = 0 on Γ−
ε ,

(1)

where the function f is a data and where the notation ∂n corresponds to the
exterior normal derivative. It is more usual to study this Laplace problem with
a source term in the domain Ωε rather than a non-homogeneous boundary con-
dition. We chose to use this problem since the original goal was to understand
the effect of roughness on the Dirichlet-Neumann operator (see the result of
Part 3.4). Nevertheless, the study made here can be easily adapted to the case
of the presence of a source term, see for instance the subsection 2.3.

2.1.2 About the Dirichlet boundary conditions

The same kind of problem with Dirichlet boundary condition has been much
studied recently, see for instance [1, 2, 6, 7, 15, 18]. It corresponds, for the more

3
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ϕ = f

O(1)

O(ε)

O(ε)

∆ϕ = 0

∂nϕ = 0

Figure 1: Domain Ωε and the boundary conditions on ϕ.

simple cases, to the following equations




∆ϕ = 1 on Ωε,

ϕ = 0 on Γ+,

ϕ = 0 on Γ−
ε .

The behavior of the solution for small values of the parameter ε is described by
the following development

ϕ(x, y) = ϕ0(x, y) + ε ϕ̃1

(x
ε
,
y

ε

)
+ ε αϕ1(x, y) + O(ε2).

The first term ϕ0 corresponds to the case without roughness. It is first defined
in Ω0 and next extended for y < 0. This extension results in an error of order ε
in the boundary layer, which is corrected by the term ε ϕ̃1. This contribution ϕ̃1

is defined in an infinite cell and we can prove that it does not vanish at infinity,
but tends to a constant α. This constant generates a new error on the top of the
domain which is corrected by the term ε αϕ1(x, y). We can rigorously justify
this development, and derive a wall law of order 1:

ϕ = ε α ∂yϕ+ O(ε2) on Γ−
0 .

2.1.3 Results for the Neumann boundary conditions

In the case of Neumann type condition on the roughness, that is to say con-
sidering the system (1), we will justify the same kind of development. More
precisely, we will get a development in the following form:

ϕ(x, y) = ϕ0(x, y) + ε ∂xϕ0(x, 0) ϕ̃1

(x
ε
,
y

ε

)
+ ε β ϕ1(x, y) + O(ε2). (2)

As in the Dirichlet case, the main term ϕ0 of this development corresponds to
the case without roughness. It satisfies





∆ϕ0 = 0 on Ω0,

ϕ0 = f on Γ+,

∂yϕ0 = 0 on Γ−
0 .

(3)

Besides the fact that the corrector depends on the slow variable x (since the
source term f depends on x, otherwise the solution ϕ is trivial), the result

4



seems similar: ϕ0 correspond to the solution without roughness, the contribu-
tion ε ϕ̃1 corrects the boundary layer error. But unlike the Dirichlet case, we
can construct ϕ̃1 so it is negligible outside the boundary layer. Indeed the ad-
ditional term ε β ϕ1 compensates for the next terms of the development. The
role of β seems quite different from that of α in the Dirichlet case. Yet it may
be interpreted as an excess energy created in the boundary layer:

β =

∫

T

h(X) dX −
∫

ω

|∇ϕ̃1|2.

The constant β which appear in the development only depend on the geometry
of the roughness. Some example of numerical values for this coefficient are given
in the subsection 2.4 devoted to numerical simulations.
From the development (2) we prove the following results:

Theorem 2.1 Let ϕ be the solution of the Laplace equation (1) on the rough
domain Ωε, and ϕ0 be the solution on the Laplace equation (3) on the smooth
domain Ω0. We have

‖ϕ− ϕ0‖L2(Ω0) = O(ε).

If we want to control more regular norm like Sobolev norms, we use the expo-
nential decreasing of ϕ̃1(X,Y ) when Y goes to +∞. We obtain

Theorem 2.2 Let ϕ be the solution of the Laplace equation (1) on the rough
domain Ωε, and ϕ0 be the solution on the Laplace equation (3) on the smooth
domain Ω0. For all s > 0 and for any δ > 0 we have

‖ϕ− ϕ0‖Hs(Ωδ
0
) = O(ε),

where Ωδ
0 corresponds to the part of the domain Ωε far from the roughness:

Ωδ
0 =

{
(x, y) ∈ R

d−1 × R ; δ < y < 1
}
. (4)

Moreover, we can deduce using the boundary conditions satisfied by all the
contributions that

∂yϕ = ε β ∂2
yϕ+ O(ε2) on Γ−

0 . (5)

Consequently, to obtain an approximation of the solution to the Laplace sys-
tem (1) at order ε2, we can study the same problem on a not rough domain Ω0

provided replace the classical Neumann boundary condition by the wall law
∂yϕ = ε β ∂2

yϕ. More precisely if we consider the system





∆ϕapp = 0 on Ω0,

ϕapp = f on Γ+,

∂yϕapp = ε β ∂2
yϕapp on Γ−

0 ,

(6)

then we prove

Theorem 2.3 Let ϕ be the solution on the Laplace equation (1) on the rough
domain Ωε. There exists a constant β only depending on the roughness such
that the solution ϕapp of the Laplace equation (6) on the smooth domain Ω0

satisfies, for all s ≥ 0 and for any δ > 0, the relations

‖ϕ− ϕapp‖Hs(Ωδ
0
) = O(ε2),
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where Ωδ
0 corresponds to the part of the domain Ωε far from the roughness (see

its definition with equation (4)).

Using the Taylor formula, it is possible to interpret the wall law as follows. To
obtain an approximation of the solution to the Laplace system (1) at order ε2,
we can study the same problem with Neumann boundary condition on a flat
domain slightly different from Ω0:

Ω =
{
(x, y) ∈ R

d−1 × R ; − ε β < y < 1
}
.

In other words, if we consider the system





∆ϕapp = 0 on Ω,

ϕapp = f on Γ+,

∂yϕapp = 0 on Γ
−
,

(7)

the boundary Γ
−

being the bottom boundary of the domain Ω then we prove

Theorem 2.4 Let ϕ be the solution on the Laplace equation (1) on the rough
domain Ωε. There exists a constant β only depending on the roughness such that
the solution ϕ

app
of the Laplace equation (7) on the smooth domain Ω satisfies,

for all s ≥ 0 and for any δ > 0, the relations

‖ϕ− ϕ
app

‖Hs(Ωδ
0
) = O(ε2),

where Ωδ
0 corresponds to the part of the domain Ωε far from the roughness (see

its definition with equation (4)).

In the subsection 2.4, numerical simulations confirm the fact the flat domain Ω
give better approximations than the flat domain Ω0.

2.2 Asymptotic development and proofs

2.2.1 Proposal for an ansatz

In this subsection we will determine more accurately how to correct errors made
by each new term in the development of the solution ϕ of the system (1) with
respect to ε. As we noted in the previous part, the corrector of order 1 can not
be justified using terms order 1 only. Moreover, using the method of this paper,
we need correctors of order 3 to justify terms of order 2. For these reasons,
we propose an ansatz to all orders. To be educational, we first present how we
obtain the ansatz. This ansatz is fully justified in the subsection 2.2.3.

Step 1: main order term At first we see the roughness as a perturbation
of the flat case. We then approach the solution ϕ by the function ϕ0 which
satisfied the equation (3) in a domain without roughness. Indeed, the zeroth
order of the development can be easily understood using a weak formulation of
the Laplace equation (1): for all ψ ∈ H1(Ωε) such that ψ = 0 on Γ+ we have

∫

Ωε

∇ϕ · ∇ψ = −
∫

Ωε

F ψ, (8)
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the function F being a lift of the non homogeneous Dirichlet boundary condition
on Γ+. With this formulation, passing to the limit ε → 0, we deduce that the
first term of the development is the solution ϕ0 of the system (3). We note that
the existence and uniqueness in H1(Ω0) for such a problem is well known (using
for instance the Lax-Milgram theorem on a weak formulation). Moreover, we
have the following regularity result.

Lemma 2.1 If f ∈ L2(R) then the solution ϕ of the system (3) is regular in Ω0

and its trace at the bottom satisfies ϕ(·, 0) ∈ C∞(R).

Proof of lemma 2.1. Using the Fourier transform of the system (3), we have





− |ξ|2ϕ̂(ξ, y) + ∂2
yϕ̂(ξ, y) = 0,

ϕ̂(ξ, 1) = f̂(ξ),

∂yϕ̂(ξ, 0) = 0.

We can easily solve this ordinary differential equation. We obtain

ϕ̂(ξ, y) =
f̂(ξ)

ch(|ξ|) ch(|ξ|y).

In particular, using the fact that f ∈ L2(R), that is f̂ ∈ L2(R), the function
ϕ̂(ξ, 0) exponentially decreases to 0 when |ξ| tends to +∞, that imply the reg-
ularity of the function x ∈ R 7→ ϕ(x, 0).
In the case where the problem is defined in a bounded domain with periodical
condition, we have f ∈ L2(T) and the lemma 2.1 is proved using the Fourier
series instead of the Fourier transform. �

This solution ϕ0 can be defined on Ωε, that is for y < 0, using for instance the
following Taylor formulae: for all y such that |y| < 1 we have

ϕ0(x, y) =

+∞∑

j=0

yj

j!
∂j

yϕ0(x, 0).

The function ϕ0 is clearly not a solution of the initial problem (1) since it does
not satisfy the bottom boundary condition ∂nϕ0 = 0 on Γ−

ε . More precisely, we
have for all x ∈ R

∂nϕ0(x,−εh(x/ε)) = n · ∇ϕ0(x,−εh(x/ε))

=
1√

1 + h′(x/ε)2

(
−h′(x/ε)

−1

)
·
(
∂xϕ0(x, 0) + O(ε)

O(ε)

)

=
−h′(x/ε)√
1 + h′(x/ε)2

∂xϕ0(x, 0) + O(ε).

Step 2: boundary layer corrector This error caused by ϕ0 and the con-
dition at the bottom can be compensated by a term acting primarily in the
boundary layer. To zoom in on this boundary layer, we introduce the following
rescaled variables

X =
x

ε
and Y =

y

ε
.

7



The domain and its bound which are considered for these variables are defined
by (see Figure 2)

ω = {(X,Y ) ∈ R
d−1 × R ; − h(X) < Y },

γ = {(X,Y ) ∈ R
d−1 × R ; Y = −h(X)}.

PSfrag replacements

O(1/ε)

O(1)

O(1)

∆ϕ̃1 = 0

∂nϕ̃1 = −h′

Figure 2: The domain ω and the boundary condition for the first corrector ϕ̃1.

Since the main order of ∂nϕ0(x,−εh(x/ε)) is proportional to ∂xϕ0(x, 0), the
first correction is proportional to ∂xϕ0(x, 0). It is written ε ∂xϕ0(x, 0) ϕ̃1(X,Y )
where the function ϕ̃1, which only depends on the variables X and Y , obeys2

{
∆ϕ̃1 = 0 on ω,

h′∂X ϕ̃1 + ∂Y ϕ̃1 = −h′ on γ.
(9)

Notice that the boundary condition is a Neumann condition since it reads

∂nϕ̃1 =
h′√

1 + h′2
, n being the exterior normal derivative to the domain ω.

The function ϕ̃1 is then defined up to an additive constant. In fact, we can
choose this constant so that the solution ϕ̃1 decays exponentially fast to 0 as Y
tends to +∞. More generally we have the following result about an equation
on the form 




∆ψ = f on ω

h′ ∂Xψ + ∂Y ψ = g on γ

ψ is periodic w.r.t. X,

(10)

where the source terms f and g satisfying
∫

T

g(X) dX +

∫

{Y <0}

f(X,Y ) dXdY = 0. (11)

In this relation, the set {Y < 0} is a subset of ω defined by {(X,Y ) ∈ ω ; Y < 0}.
We denote by L2

](ω) the set of functions L2(ω) and periodic with respect to the

variable X , and by L2
] (T) the L2 periodic functions on the torus T.

2Since there will be no ambiguity in this part, the differential operators ∆, div and ∇ will
be act on the variables (X, Y ) for the functions like eϕ1 and sometimes on variables (x, y) for
the functions like ϕ0.
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Lemma 2.2 Let f ∈ L2
] (ω). We denote by fk ∈ L2(0,+∞) its Fourier co-

efficients. Let g ∈ L2
] (T) such that the relation (11) holds. If f0 = 0 and

fk(Y ) = Pk(Y ) e−|k|Y where Pk is a polynomial then there exists a unique solu-
tion ψ ∈ L2

] (ω) to the system (10). Moreover, the Fourier coefficients ψk of the

function ψ satisfy ψ0 = 0 and ψk(Y ) = Qk(Y ) e−|k|Y where Qk is a polynomial.

Proof of lemma 2.2.

- The existence and uniqueness result in the space L2
] (ω) is classical (using for

instance the weak formulation and the Lax-Milgram theorem).
- Using the Stokes formula we obtain

∫

{Y <0}

f(X,Y ) dXdY =

∫

{Y <0}

∆ψ(X,Y ) dXdY

= −
∫

T

g(X) dX +

∫

T

∂Y ψ(X, 0) dX.

Since the assumption (11) holds, this relation reads in term of Fourier coeffi-
cients: ψ′

0(0) = 0.
- Taking the Fourier transform of the Laplace equation (10), we have for all
Y ≥ 0 and for all k ∈ Z :

−k2ψk(Y ) + ψ′′
k (Y ) = fk(Y ).

For k = 0, we use the assumption f0 = 0, the relation ψ′
0(0) = 0 and the fact

that ψ0 ∈ L2(0,+∞) to deduce ψ0 = 0. For k 6= 0, we note that the solutions
of the ordinary differential equation

−k2ψk(Y ) + ψ′′
k (Y ) = Pk(Y ) e−|k|Y

are on the form ψk(Y ) = Qk(Y ) e−|k|Y + Q̃k(Y ) e|k|Y where Qk and Q̃k are two

polynomials. Since ψk ∈ L2(0,+∞) we necessarily have Q̃k = 0 and we obtain
the result of the lemma. �

Consequently, the solution ψ of the system (10) has the following Fourier de-
composition, for all (X,Y ) ∈ T × [0,+∞[:

ψ(X,Y ) =
∑

k 6=0

Qk(Y ) e−ikX−|k|Y .

We deduce the following result:

Corollary 2.1 Under the assumption of the lemma 2.2, the solution ψ ∈ L2
] (ω)

the system (10) satisfy: for any δ < 1, for all (a, b) ∈ N
2, there exists Y0 > 0

such that for all Y > Y0 and for all X ∈ T we have

|∂a
X∂

b
Y ψ(X,Y )| ≤ e−δY .

We apply this corollary for the system (9), that is with f = 0 and g = h′ (the
assumption (11) is satisfied). As announced, we deduce that the solution ϕ̃1

decays exponentially fast to 0 as Y tends to +∞. We note that this term
does not really affect the condition on the top boundary Γ+, contrary to what
happens in the Dirichlet case.

9



Step 3: Next boundary layer corrector If you put the proposed develop-
ment ϕ0(x, y) + ε ∂xϕ0(x, 0) ϕ̃1(X,Y ) in the original Laplace problem (1) then
you realize that there are terms you do not know control. For instance, evaluat-
ing the laplacian ∂xϕ0(x, 0) ϕ̃1(X,Y ) we make appear the term 2∂2

xϕ0(x, 0) ∂X ϕ̃1(X,Y ).
It is then necessary to involve another correction, proportional to ∂2

xϕ0(x, 0),
namely ε2 ∂2

xϕ0(x, 0) ϕ̃2(X,Y ) where the function ϕ̃2, which only depends on
the variables X and Y , obeys

{
∆ϕ̃2 = −2∂Xϕ̃1 on ω,

h′∂X ϕ̃2 + ∂Y ϕ̃2 = −h− h′ ϕ̃1 + β2 on γ.

Contrary to the case of ϕ̃1, the solution of this system (which is defined up to
an additive constant again) can not vanish when Y to +∞ except for a good
choice of an additive constant in the boundary value, denoted β2. Indeed, using
the lemma 2.2 we prove that the solution ϕ̃2 exponentially decays to 0 if we
choose

β2 =

∫

T

h(X) dX +

∫

T

h′(X)ϕ̃1(X,−h(X)) dX + 2

∫

{Y <0}

∂X ϕ̃1(X,Y ) dXdY.

We can simplify this expression noting that, first we have by X-periodicity:

∫

{Y <0}

∂X ϕ̃1(X,Y ) dXdY =

∫

T

(∫ 0

−h(X)

∂X ϕ̃1(X,Y ) dY
)
dX

= −
∫

T

h′(X)ϕ̃1(X,−h(X)) dX,

and next, by the Stokes formula:

0 = −
∫

ω

∆ϕ̃1 ϕ̃1 =

∫

ω

|∇ϕ̃1|2 −
∫

γ

∂nϕ̃1 ϕ̃1

=

∫

ω

|∇ϕ̃1|2 −
∫

T

h′(X) ϕ̃1(X,−h(X)) dX.

So, the constant β2 can be written making appear the average of the heightm(h)
and the energy E(h) which are two quantities only depending on the height h:

m(h) :=

∫

T

h(X) dX and E(h) :=

∫

ω

|∇ϕ̃1|2. (12)

Finally, the solution ϕ̃2 decays exponentially fast to 0 as Y tends to +∞ if (and
only if) we choose

β2 = m(h) −E(h). (13)

Step 4: First corrector in the main domain The introduction of this
constant β2 in the boundary condition must be compensate using a new corrector
ε ϕ1(x, y) in the main domain Ω0 satisfying





∆ϕ1 = 0 on Ω+,

ϕ1 = 0 on Γ+,

∂yϕ1 = −∂2
xϕ0(x, 0)β2 on Γ0.

(14)
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Remark 2.1 The solution ϕ1 of the system (14) can be obtained using a for-
mulation with the same type of boundary conditions than for the main Laplace
system (1). Indeed, we let ϕ1 = ψ1 + β2∂yϕ0 and ψ1 satisfies (provided f is
regular enough) 




∆ψ1 = 0 on Ω+,

ψ1 = −β2 ∂yϕ0 on Γ+,

∂yψ1 = 0 on Γ0.

Step 5: Final proposition for the ansatz As for the main term ϕ0, the
corrector term ϕ1 should be extended for y < 0, thus generating a new error...
We will see that we need a lot of terms to justify the development (with the
method used in this paper). We then directly proposed a development up to
the order N ∈ N:

ϕ(x, y) =

N−1∑

k=0

εk ϕk(x, y)+

N∑

k=1

εk

(
k∑

j=1

∂j
xϕk−j(x, 0) ϕ̃j(X,Y )

)
+R(x, y). (15)

The system verified by each term of this development will be specified in the
next section.

2.2.2 System for each profile

In this section, we put the ansatz (15) into the equation (1). By identifying the
different powers of ε, we deduce that the system must meet all profiles ϕk, ϕ̃k

as well as the residue R.

Step 1: Laplace equation

We compute the laplacian of ϕ given by (15) as follows

∆ϕ(x, y) =

N−1∑

k=0

εk ∆ϕk(x, y) +

N∑

k=1

εk

(
k∑

j=1

∂j+2
x ϕk−j(x, 0) ϕ̃j(X,Y )

)

+2

N∑

k=1

εk−1

(
k∑

j=1

∂j+1
x ϕk−j(x, 0) ∂X ϕ̃j(X,Y )

)

+

N∑

k=1

εk−2

(
k∑

j=1

∂j
xϕk−j(x, 0) ∆ϕ̃j(X,Y )

)
+ ∆R(x, y).

11



Ordering the powers of ε we write

∆ϕ(x, y) =

N−1∑

k=0

εk∆ϕk(x, y)

+
N∑

k=1

εk−2

[
k∑

j=1

∂j
xϕk−j(x, 0)

(
∆ϕ̃j(X,Y ) + 2∂Xϕ̃j−1(X,Y ) + ϕ̃j−2(X,Y )

)]

+ εN−1

[
N∑

j=1

∂j+1
x ϕN−j(x, 0) (ϕ̃j−1(X,Y ) + 2∂X ϕ̃j(X,Y ))

]

+ εN

[
N∑

j=1

∂j+2
x ϕN−j(x, 0) ϕ̃j(X,Y )

]
+ ∆R(x, y),

(16)
where we use the convention ϕ̃0 = ϕ̃−1 = 0 and ϕ−1 = 0. We then choose to
impose the following conditions on the profiles

∣∣∣∣∣
∆ϕk = 0 in Ω0 for all k ∈ {0, ..., N − 1}
∆ϕ̃k = −2∂Xϕ̃k−1 − ϕ̃k−2 in ω for all k ∈ {1, ..., N}. (17)

The residue R is chosen such that the two last lines of the equality (16) vanish. It
satisfies ∆R = r0 where r0 is on the following form r0(x, y) = εN−1F(x, x/ε, y/ε)+
εNG(x, x/ε, y/ε), the functions F and G doing not depend on ε.

Step 2: Bottom boundary condition

The Neumann homogeneous boundary condition on Γ−
ε for the function ϕ is

equivalent to the following relation, for all x ∈ R,

h′(X)∂xϕ(x,−εh(X)) + ∂yϕ(x,−εh(X)) = 0.

The functions ϕk defined on Ω0 are extended on Ωε (that is for small negative
values of the coordinate y) using the formula of Taylor-Young. We deduce that
for all integers a and b, and for ε small enough, we have

∂a
x∂

b
yϕi(x,−εh(X)) =

+∞∑

`=0

(−εh(X))`

`!
∂a

x∂
`+b
y ϕi(x, 0).

Using the ansatz (15), the first derivatives of the function ϕ can be written as

∂xϕ(x,−εh(X)) =
N−1∑

p=0

εp

[
p∑

j=0

(−h(X))j

j!
∂x∂

j
yϕp−j(x, 0)

+

p∑

j=0

∂X ϕ̃j+1(X,−h(X))∂j+1
x ϕp−j(x, 0)

+

p∑

k=0

ϕ̃k(X,−h(X))∂k+1
x ϕp−k(x, 0) − ∂xϕp(x, 0)

]
+ O(εN ),

12



∂yϕ(x,−εh(X)) =

N−1∑

p=0

εp

[
p∑

j=0

(−h(X))j

j!
∂j+1

y ϕp−j(x, 0)

+

p∑

j=0

∂Y ϕ̃j+1(X,−h(X))∂j+1
x ϕp−j(x, 0)

]
+ O(εN ).

Recall that in the subsection 2.2 we will see that the boundary condition on ϕ0

at the bottom is written ∂yϕ0(x, 0) = 0 and that we need a constant β2 for the
boundary condition on ϕ1, that is ∂yϕ1(x, 0) = −β2∂

2
xϕ0(x, 0). More generally,

we propose the following boundary condition of Neumann type for ϕk, k ∈
{1, ..., N − 1}:

∣∣∣∣∣ ∂yϕk(x, 0) = −
k−1∑

j=0

βk+1−j ∂
k+1−j
x ϕj(x, 0). (18)

The constants β2, β3, ..., βN will be precise later (these constants will be used
to assure that the boundary correctors ϕ̃k have no influence in the main do-
main Ω0).

Moreover, we recall that from the equation (17) we have the relations ∆ϕk = 0
for any k ∈ {0, ..., N − 1}. Consequently it is possible to express all the deriva-
tives ∂a

x∂
b
yϕk(x, 0) using the x-derivatives only. For instance we obtain

∂x∂
j
yϕp−j(x, 0) =





(−1)
j
2 ∂j+1

x ϕp−j(x, 0) if j is even,

(−1)
j+1

2

p−j∑

k=0

βp−j+1−k ∂
p−k+1
x ϕk(x, 0) if j is odd,

and

∂j+1
y ϕp−j(x, 0) =





(−1)
j+1

2 ∂j+1
x ϕp−j(x, 0) if j is odd,

(−1)
j+2

2

p−j∑

k=0

βp−j+1−k ∂
p−k+1
x ϕk(x, 0) if j is even.

We then made a few manipulations on the index to rewrite the term Θ =
p∑

j=0

(−h(X))j

j!
∂x∂

j
yϕp−j(x, 0) which appear in the derivative ∂xϕ(x,−εh(x/ε)):

Θ =

p∑

j=0
j even

(−h(X))j

j!
(−1)

j
2 ∂j+1

x ϕp−j(x, 0)

+

p∑

j=0
j odd

(−h(X))j

j!
(−1)

j+1

2

p−j∑

k=0

βp−j+1−k∂
p−k+1
x ϕk(x, 0)

︸ ︷︷ ︸
= Θ1
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where the contribution Θ1 reads

Θ1 =

p∑

k=0




p−k∑

j=0
j odd

(−h(X))j

j!
(−1)

j+1

2 βp−j+1−k


∂p−k+1

x ϕk(x, 0)

=

p∑

i=0




i∑

j=0
j odd

(−h(X))j

j!
(−1)

j+1

2 βi−j+1


∂i+1

x ϕp−i(x, 0)

In the same spirit, we write the term Ψ =

p∑

j=0

(−h(X))j

j!
∂j+1

y ϕp−j(x, 0) which

appear in the derivative ∂yϕ(x,−εh(x/ε)) as follows

Ψ =

p∑

j=0
j odd

(−h(X))j

j!
(−1)

j+1

2 ∂j+1
x ϕp−j(x, 0)

+

p∑

i=0

(
i∑

j=0
j even

(−h(X))j

j!
(−1)

j+2

2 βi−j+1

)
∂i+1

x ϕp−i(x, 0).

We can therefore write the derivatives of ϕ using only derivatives with respect
to the variable x:

∂xϕ(x,−εh(x/ε)) =

N−1∑

p=0

εp

p∑

j=0

∂j+1
x ϕp−j(x, 0)Uj + O(εN ),

∂yϕ(x,−εh(x/ε)) =

N−1∑

p=0

εp

p∑

j=0

∂j+1
x ϕp−j(x, 0)Vj + O(εN ),

where we have defined




U2j = ∂X ϕ̃2j+1 + ϕ̃2j +
(−1)j

(2j)!
h2j +

j−1∑

s=0

(−1)s h2s+1

(2s+ 1)!
β2j−2s for all j ∈ N,

U2j−1 = ∂X ϕ̃2j + ϕ̃2j−1 +

j−1∑

s=0

(−1)s+1 h2s+1

(2s+ 1)!
β2j−2s−1 for all j ∈ N

∗,

and




V2j = ∂Y ϕ̃2j+1 +

j−1∑

s=0

(−1)s+1 h2s

(2s)!
β2j−2s+1 for all j ∈ N,

V2j−1 = ∂Y ϕ̃2j −
(−1)j

(2j − 1)!
h2j−1 +

j−1∑

s=0

(−1)s+1 h2s

(2s)!
β2j−2s for all j ∈ N

∗.

Cancel the normal derivative at the bottom can be done by imposing h′Uj+Vj =
0 for all j ∈ N, so by imposing the following condition on the boundary γ: for

14



all j ∈ N
∗

∣∣∣∣∣∣∣∣∣∣

h′ ∂X ϕ̃2j + ∂Y ϕ̃2j = −h′ϕ̃2j−1 +
(−1)j

(2j − 1)!
h2j−1

+

j−1∑

s=0

(−1)s h
2s

(2s)!

(
h′h

2s+ 1
β2j−2s−1 + β2j−2s

)
,

(19)

and for all j ∈ N
∣∣∣∣∣∣∣∣∣∣

h′ ∂X ϕ̃2j+1 + ∂Y ϕ̃2j+1 = −h′ϕ̃2j −
(−1)j

(2j)!
h′h2j

+

j−1∑

s=0

(−1)s+1 h2s

(2s)!

(
h′h

2s+ 1
β2j−2s − β2j−2s+1

)
,

(20)

where we recall that by convention ϕ̃0 = 0. Note that the residue R obeys
∂nR

∣∣
Γ−

ε
= r− where r− = O(εN ).

Step 3: Top boundary condition

Using the ansatz (15) with y = 1 we obtain

ϕ(x, 1) =

N−1∑

k=0

εk ϕk(x, 1) +

N∑

k=1

εk

(
k∑

j=1

∂j
xϕk−j(x, 0) ϕ̃j(X, 1/ε)

)
+R(x, 1).

We will see that for a good choice of the constants βk, the functions ϕ̃k(X,Y )
exponentially decreases to 0 when Y goes to infinity. We then naturally impose

∣∣∣∣∣
ϕ0(x, 1) = f(x),

ϕk(x, 1) = 0 for all k ∈ {1, ..., N − 1},

so that the residue R satisfies the following top boundary condition R|Γ+ = r+
where r+ = O(e−1/ε).

2.2.3 Study of the different profiles

In this section, we recall the systems satisfied by each term of the ansatz (15),
including the residue. We first note that the system satisfied by the boundary
layer terms ϕ̃k and by the the “main domain” terms ϕk are only coupled via
the constants βk. In fact, this is due to the very specific form of the ansatz. We
will see that this “separation of variables” does not valid in more complex cases
(see for instance part 3.3.2).

Profiles defined on the main domain The equation satisfied by the main
order term of the ansatz, that is ϕ0, corresponds to the case ε = 0: it is given
by the system (3) and the regularity of the solution is given by the Lemma 2.1.
The other terms of the ansatz (15) which are defined in the main domain Ω0

are the profiles ϕk, k ≥ 1. They satisfy the same type of problem:




∆ϕk = 0 on Ω0,

ϕk = 0 on Γ+,

∂yϕk = −
k−1∑

j=0

βk+1−j ∂
k+1−j
x ϕj(x, 0) on Γ−

0 .
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Thus, knowing the solutions ϕ` for all ` < k (which are regular at the bottom,
that is for y = 0) we deduce the solution ϕk . A simple induction implies that
all these problems are well posed. We have the following result:

Proposition 2.1 For any choice of the constants βj , j ∈ {2, ..., N}, all the
main terms ϕk, k ∈ {0, ..., N − 1}, are well defined in L2(Ω).

Remark 2.2 Let ϕk = ψk +

k−1∑

j=0

βk+1−j ∂
k−1−j
x ∂yϕj . We obtain the solution

ϕk using a formulation with the same type of boundary conditions than for the
main Laplace system (1) for ψk (provided f is regular enough):





∆ψk = 0 on Ω0,

ψk = −
k−1∑

j=0

βk+1−j ∂
k−1−j
x ∂yϕj on Γ+,

∂yψk = 0 on Γ−
0 .

Profiles defined on the boundary layer At this stage, the correctors ϕ̃k

satisfy equations of the form

{
∆ϕ̃k = fk on ω

h′ ∂X ϕ̃k + ∂Y ϕ̃k = gk on γ,
(21)

the sources terms fk and gk being defined by formula (17) and (19)-(20) respec-
tively (we note that the terms gk depend on the choice of the constants β2, ...,
βk).
We prove (see lemma 2.2) that there exists a solution ϕ̃k to system (21) which
exponentially decreases to 0 as Y tends to +∞ if we have the “compatibility”
relation: ∫

T

gk(X) dX +

∫

{Y <0}

fk(X,Y ) dXdY = 0.

We can determine the constants β2, ..., βN inductively by requiring that every
solution ϕ̃k exponentially decays to 0 (the example corresponding to the case of
the computation of the constant β2 is given in the previous part, see page 10).
Using the corollary 2.1, we prove by induction on k the following result about
the boundary layer problems:

Proposition 2.2 All the boundary layer corrector ϕ̃k are well defined in L2
] (ω).

They satisfy: for any δ < 1, for all (a, b) ∈ N
2, there exists Y0 > 0 such that for

all Y > Y0 and for all X ∈ T we have

|∂a
X∂

b
Y ϕ̃k(X,Y )| ≤ e−δY .

Residue estimate The equation on the rest R is written as follows:





∆R = r0 on Ωε,

R = r+ on Γ+,

∂nR = r− on Γ−
ε .

(22)
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The existence and uniqueness of a smooth solution to this problem is classical
(as soon as the source terms and the domain are regular). What is important
here is to obtain estimates and to know their dependence on the parameter ε.
In practice, since we propose an expansion of the solution ϕ in powers of ε for
all order, it suffices to show that there exists estimates of the residue R on the
form ε−M , the power M ∈ N being not really important.
From the expressions of the source terms r0, r+ and r−, we know that they
satisfy, for all s ≥ 0,

‖r0‖Hs(Ωε) . εN−1−s, ‖r+‖Hs(Γ+) . e−1/ε and ‖r−‖Hs(Γ−

ε ) . εN .

To obtain a bound on the solution R of the system (22) we define the following
lift for all (x, y) ∈ Ωε:

R−(x, y) = F
(
d−

ε α

)
r−(p−) d− and R+(x, y) = F (1 − y) r+(x),

where F ∈ C∞(R+,R+) satisfies F(0) = 1, F ′(0) = 0 and F(d) = 0 for d ≥ 1,
where α represents the reach of the curve Y = −h(X), d− = dist((x, y),Γ−

ε )
and p− = proj((x, y),Γ−

ε ). We note that the function R− vanished far from the
boundary Γ−

ε and satisfies ∂nR
− = r− on Γ−

ε , whereas function R+ vanished far
from the boundary Γ+ and satisfies R+ = r+ on Γ+. Consequently, introducing

the function R̃ = R−R− −R+ we have




∆R̃ = r̃0 on Ωε,

R̃ = 0 on Γ+,

∂nR̃ = 0 on Γ−
ε ,

where r̃0 = r0 −∆R− −∆R+. For the solution R̃ we have the classical bounds
‖R̃‖Hs(Ωε) ≤ ‖r̃0‖Hs−2(Ωε) for all s ≥ 0. From the bounds on r0, R

− and R+

(that is from the bounds on r0, r−, r+ and the bound on the height h), we can
deduce bounds for the residue R in the norm Hs(Ωε).

Proposition 2.3 For all s ≥ 0, there exist C ∈ R and M ∈ N only depending
on the functions h, f and on the real s such that the solution of the system (22)
satisfies

‖R‖Hs(Ωε) ≤ C ε−M .

2.2.4 Proofs of Theorems 2.1, 2.2, 2.3 and 2.4

- To prove the Theorem 2.1 it suffices to give a bound in L2(Ω0) with respect

to the parameter ε for the term A = ∂xϕ0(x, 0) ϕ̃1

(x
ε
,
y

ε

)
. Using the change of

variable y = εY we have:

‖A‖2
L2(Ω0) =

∫

R

∫ 1

0

∣∣∣∂xϕ0(x, 0) ϕ̃1

(x
ε
,
y

ε

) ∣∣∣
2

dy dx

= ε

∫

R

∫ 1/ε

0

∣∣∣∂xϕ0(x, 0) ϕ̃1

(x
ε
, Y
) ∣∣∣

2

dY dx

≤ ε

∫

R

∫ +∞

0

∣∣∣∂xϕ0(x, 0) ϕ̃1

(x
ε
, Y
) ∣∣∣

2

dY dx.
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Using the two-scale convergence introduced by G. Nguetseng in [19] we know
that

‖A‖2
L2(Ω0) . ε

∫

R

∫

T

∫ +∞

0

∣∣∂xϕ0(x, 0) ϕ̃1 (X,Y )
∣∣2 dY dX dx

. ε
(∫

R

∣∣∂xϕ0(x, 0)
∣∣2 dx

)(∫

T

∫ +∞

0

∣∣ϕ̃1 (X,Y )
∣∣2 dY dX

)
.

From the lemmas 2.1 and 2.2 we know that ∂xϕ0(·, 0) is bounded in L2(R) and
that ϕ̃1 is bounded in L2(ω). We deduce that ‖A‖2

L2(Ω0) . ε that implies the
result of the Theorem 2.1. �

- Let us now turn to the proof of Theorem 2.2. We must control the derivatives
of A. Clearly, for each derivative we lose a power of ε. But, the corollary 2.1
implies that each derivative of ϕ̃1 is exponentially decreasing far from the bottom
boundary Y = 0, so that we can retrieve this power as soon we are not on the
boundary Y = 0. As example, for the y-derivatives, using the same method
that to control ‖A‖L2(Ω0) we have, for all k ≥ 0 and for any δ > 0 the following
estimate:

‖∂k
yA‖2

L2(Ωδ
0
) . ε1−k

∫

T

∫ +∞

δ/ε

∣∣∂Y ϕ̃1 (X,Y )
∣∣2 dY dX

From the corollary 2.1 we deduce ‖∂k
yA‖2

L2(Ωδ
0
)
. ε1−k e−δ/ε . ε. �

- The Theorem 2.3 comes from the two following remarks: First, using the
development of ϕ with respect to ε, and using the bounds on the oscillating
terms ϕ̃k (see for instance the bounds on A just before) we have

‖ϕ− (ϕ0 + ε ϕ1)‖Hs(Ωδ
0
) = O(ε2). (23)

Next, using the system satisfied by ϕ0 and ϕ1 we can deduce that the combi-
nation ϕ0 + ε ϕ1 satisfies the same system than ϕapp, up to a term of order ε2.
We have

‖(ϕ0 + ε ϕ1) − ϕapp‖Hs(Ωδ
0
) = O(ε2). (24)

Thus, the Theorem 2.3 is an immediate consequence of these two estimates (23)
and (24). �

- The Theorem 2.4 is proved using ∂yϕapp(x, 0)−ε β ∂2
yϕapp(x, 0) = ∂yϕapp(x,−ε β)+

O(ε2). We deduce that ϕapp satisfies the same system than ϕapp, up to a term
of order ε2. That implies

‖ϕapp − ϕapp‖Hs(Ωδ
0
) = O(ε2),

and that conclude the proof of the Theorem 2.4. �

2.3 Some other cases relative to the Laplace equation

A simple case corresponds to the case where the top boundary condition ϕ(x, 1) =
f does not depend on x. Indeed, the development proposed in the ansatz (which
make appear a lot of derivatives of ϕ0 with respect to the x variable, which
become zero) is exact at any order since the exact solution to the Laplace prob-
lem (1) in that case is the constant solution ϕ(x, y) = f .
Moreover, the method presented in the previous part can be easily adapted to
more complex cases. We give here two possible generalizations (we will see in
the subsection 3.3.2 another possible extension with a more complex operator):
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2.3.1 Additional source terms

A first interesting case corresponds to the following Laplace problem





∆ϕ = F on Ωε,

ϕ = 0 on Γ+,

∂nϕ = 0 on Γ−
ε ,

where the function F is a data. For such a problem, the same method that those
presented in this paper allows us to obtain the same results and a development
of the solution (provided that the function F is regular because the proposed
development uses the trace ϕ0(x, 0) of the solution ϕ0 to the Laplace problem
∆ϕ0 = F ).

Example - We consider the previous case with F = 1. That corresponds to
the case which is generally studied with the homogeneous Dirichlet boundary
condition. Moreover, in some contexts it is possible to show that this case is
representative of cases where F is not constant, see for instance [8]. The first
term of the development is explicit and is given by

ϕ0(x, y) =
1

2
(y2 − 1).

This solution satisfies h′∂xϕ0(x,−εh)+∂yϕ0(x,−εh) = −εh. We then introduce
a corrector ε2ϕ̃2(X,Y ), solution of the following problem

{
∆ϕ̃2 = 0 on ω,

∂nϕ̃2 = h−m on γ,

where the constantm is chosen such that the solution ϕ̃2(X,Y ) exponentially de-
creases to 0 when y goes to +∞: that is m =

∫
T
h(X) dX . This constant brings

a new error a the bottom, which is corrected by an additive term εϕ1(x, y). The
function ϕ1 is solution of the following Laplace problem





∆ϕ1 = 0 on Ωε,

ϕ1 = 0 on Γ+,

∂yϕ1 = m on Γ−
0 .

The solution is explicit too: ϕ1(x, y) = m (y − 1) and we deduce the following
development:

ϕ(x, y) =
1

2
(y2 − 1) + εm (y − 1) + ε2ϕ̃2

(x
ε
,
y

ε

)
+ O(e−1/ε).

Remark 2.3 Clearly, it is possible to consider a Laplace problem with source
terms F in the main domain Ωε and a source term f on the top boundary Γ+.

2.3.2 Robin-Fourier boundary conditions

Another possible generalization concerns the type of boundary conditions im-
posed at the bottom of the domain. Indeed, conditions of type Robin-Fourier
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can also be considered. This case might seem a mixture of Dirichlet and Neu-
mann cases. In reality, it is really different since the approximation order 0 is
not so obvious as in the case Dirichlet or Neumann case (see for example the
justification in the Neumann case, p. 6). Indeed, consider the following Laplace
equation with Robin-Fourier condition with a coefficient λ ∈ R:





∆ϕ = F on Ωε,

ϕ = 0 on Γ+,

∂nϕ = λϕ on Γ−
ε .

Its weak formulation reads: for all ψ ∈ H1(Ωε) such that ψ = 0 on Γ+ we have
∫

Ωε

∇ϕ · ∇ψ − λ

∫

Γ−

ε

ϕψ = −
∫

Ωε

F ψ.

The passage to the limit ε → 0 in the boundary terms is not obvious. Because
the length of Γ−

ε does not generally tends to the length of Γ−
0 , it is clear that the

limit equation is not intuitive. Such phenomena are well known and are studied
in other contexts (see for instance the book [8]).
Nevertheless, using exactly the same approach that those presented in the Neu-
mann case, it is possible to recover the result. We present here the main ideas
without going into details that are similar to the Neumann case.
- First, we look for the solution ϕ as ϕ(x, y) = ϕ0(x, y) + εϕ̃1(x,X, Y ) + · · ·
- Next, we put this development into the Laplace equation and separate the
powers of ε. We obtain (in fact using the next corrector for the order 0 as in
the Neumann case) ∆X,Y ϕ̃1 = 0 and ∆ϕ0 = F .
- We now put the development into the Robin-Fourier boundary condition (after
approaching ϕ(x,−εh(x/ε)) by ϕ(x, 0)). We obtain, for Y = −h(X)

h′(X)∂xϕ0(x, 0) + h′(X)∂X ϕ̃1(X,Y ) + ∂yϕ0(x, 0)

+ ∂Y ϕ̃1(X,Y ) − λ
√

1 + h′(X)2ϕ0(x, 0) = O(ε).

- From this relation, we want to deduce two boundary conditions: one for the
main order term ϕ0 and another for the boundary layer corrector ϕ̃1. Separating
the variables, these two relations can be written making appear a Robin-Fourier
condition for the main order term (µ being a constant we will choose later)

∂yϕ0(x, 0) = λµϕ0(x, 0),

h′∂X ϕ̃1 + ∂Y ϕ̃1 = −h′∂xϕ0(x, 0) + λ
(√

1 + h′(X)2 − µ
)
ϕ0(x, 0).

- Moreover, the boundary layer corrector, written as h′∂X ϕ̃1 + ∂Y ϕ̃1 = g, must
not disturb the solution away from the boundary Γ+

ε . In other words, we must
necessarily have the relation

∫
T
g dX = 0 (which corresponds to the assump-

tion (11) to apply the lemma 2.2). That impose the value of the constant µ:

µ =

∫

T

√
1 + h′(X)2. (25)

- Finally, we put the development into the top boundary condition to deduce
that the main order term satisfies




∆ϕ0 = F on Ω0,

ϕ0(x, 1) = 0,

∂yϕ0(x, 0) = λµϕ0(x, 0).
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Remark 2.4 Note that the method presented here can give an estimation of the
error and can propose a wall law in the case of Robin-Fourier law. Moreover,
for more general (for example nonlinear) law like

∂nϕ = G(x, ϕ) on Γ−
ε ,

we can easily prove that this law becomes the following wall law when ε tends
to 0:

∂yϕ0 = µG(x, ϕ0) on Γ−
0 .

The coefficient µ is given by the relation (25) and does not depend on the non-
linearity G.

Remark 2.5 In [3], J. Arrieta and S. Bruschib justify this first order law. We
find in particular the law they are proposing (see the example 2.3 p. 6 of [3]).
Moreover, using our formulation, we can give a geometrical formulation for
the constant µ (see also [20] about homogenization in a climatization problem).
It can be interpreted as the length of a roughness (defined as the graph of the
application h : X ∈ [0, 1] 7→ h(X)).

2.4 Numerical validation

2.4.1 Some examples for the value for the coefficient β2

We can compute the value of the coefficient β2 for some “classical” geometries.
Recall that this coefficient is linked to the geometry h via the formulae (see
page 10)

β2 =

∫

T

h(X) dX −
∫

ω

|∇ϕ̃1|2.

In this equality, the function ϕ̃1 is the solution of the Laplace problem

{
∆ϕ̃1 = 0 on ω,

h′∂X ϕ̃1 + ∂Y ϕ̃1 = −h′ on γ,
(26)

which tends exponentially fast to 0 as Y tends to +∞.
To compute the coefficient β2 for a given geometry h, we first solve this prob-
lem (26) and then compute the associated energy. All the computations were
performed with the FreeFem++ program3.
Taking for instance the sinusoidal boundary h(X) = sin(2πX). The value of the
corresponding coefficient satisfies β2 ≈ 0.839. For other examples of patterns of
roughness, the results are given with the Figure 3.

2.4.2 Comparison between average-bottom and better-flat approxi-

mations

From the asymptotic development of the solution ϕ of the Laplace equation (1)
on the rough domain Ωε, we first deduce that theoretically ϕ0 (which is the so-
lution of the Laplace equation in the flat domain Ω0) satisfies ‖ϕ−ϕ0‖L2(Ωδ

0
) =

3This software, see http://www.freefem.org/ff++ is based on weak formulation of the
problem and finite elements method.
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PSfrag replacements

β2 = 0 β2 ≈ 0.323 β2 ≈ 0.302 β2 ≈ 0.839

Figure 3: Different patterns of roughness and their coefficient β2.

O(ε) (see the Theorem 2.1). Moreover, the next terms of the asymptotic de-
velopment implies that if we consider the Laplace equation in the flat domain
slightly different Ω = {(x, y) ∈ R

d−1×R ; −ε β2 < y < 1} then the solution ϕapp

satisfies ‖ϕ− ϕapp‖L2(Ωδ
0
) = O(ε2) (see the Theorem 2.4).

PSfrag replacements
ΩεΩ0 Ω

Figure 4: The three domains: Ωε with roughness (middle), Ω0 flat with average
of the roughness (left), Ω flat taking to account the first order roughness effects.

We propose in this subsection to verify these properties numerically. We consider
the 1-periodical source term f(x) = cos(2πx) so that it is easy to have an explicit
expression for the solutions ϕ0 and ϕ:

ϕ0(x, y) =
ch(2πy)

ch(2π)
cos(2πx) and ϕ(x, y) =

ch(2π(y − β2ε))

ch(2π(1 − β2ε))
cos(2πx).

In this example, the roughness is describe using the form function h(X) =
sin(X) for which the “roughness coefficient” is approximated by β2 ≈ 0.839 (see
the previous numerical simulations in the subsection 2.4.1). We numerically
compute some solutions ϕ for different values of the parameter ε and evaluate
the errors ‖ϕ−ϕ0‖L2 and ‖ϕ−ϕ‖L2 . The results are given on the table-figure 5.
These results confirm that use the “ideal” flat domain Ω give better estimates
than use the “mean-oscillation” flat domain Ω0.

3 Influence of the domain

3.1 Notations and main results

In this section, we are interested in the behavior of the solution to the Laplace
equation on a rough domain ΩT,B

ε much more complicated than the domain Ωε

introduced in the section 2. More precisely, the domain ΩT,B
ε is defined by (see

Figure 3.1)

ΩT,B
ε =

{
(x, z) ∈ R

d−1 × R ; B(x) − εh
(z
ε

)
< y < T (x)

}
,
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‖ϕ− ϕ0‖L2 ‖ϕ− ϕ‖L2

ε = 1/4 3.28 · 10−3 9.35 · 10−3

ε = 1/8 9.17 · 10−4 6.50 · 10−4

ε = 1/16 3.39 · 10−4 8.85 · 10−5

ε = 1/32 1.45 · 10−4 1.96 · 10−5

ε = 1/64 6.70 · 10−5 6.00 · 10−6

PSfrag replacements
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‖ϕ− ϕ0‖L2

‖ϕ− ϕ‖L2

1/ε

Figure 5: Error ‖ϕ− ϕ0‖L2 and ‖ϕ− ϕ‖L2 with respect to ε.

where the functions T and B are supposed to be regular and satisfied the relation
T (x) − B(x) ≥ Hmin > 0 for all x ∈ R. The boundaries are naturally denoted
by ΓT,B,+ and ΓT,B,−

ε . We are thus interested in the following system





∆ϕ = 0 on ΩT,B
ε ,

ϕ = f on ΓT,B,+,

∂nϕ = 0 on ΓT,B,−
ε ,

(27)

where the function f is a data and where the notation ∂n correspond to the
exterior normal derivative.

PSfrag replacements

ϕ = f

O(1)

O(ε)

O(ε)

∆ϕ = 0

∂nϕ = 0

Figure 6: A more general domain ΩT,B
ε .

As in the simple case corresponding to T = 1 and B = 0 (see section 2) we will
see that the solution ϕ to this Laplace equation (27) tends to the solution ϕ0 of
the following system: 




∆ϕ0 = 0 on ΩT,B
0 ,

ϕ0 = f on ΓT,B,+,

∂nϕ0 = 0 on ΓT,B,−
0 ,

(28)

More precisely we prove:
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Theorem 3.1 Let ϕ be the solution of the Laplace equation (27) on the rough
domain ΩT,B

ε , and ϕ0 be the solution on the Laplace equation (28) on the smooth

domain ΩT,B
0 . For all s > 0 and for any δ > 0 we have

‖ϕ− ϕ0‖Hs(ΩT,B+δ
0

) = O(ε).

Moreover, as in the section 2 again, we will give two possible interpretations to
the next terms of the development of ϕ with respect to the powers of ε.

- The first correspond to an approximation of ϕ at order 2 in the domain without
roughness, but using a accurate wall law.

Theorem 3.2 Let ϕ be the solution on the Laplace equation (27) on the rough
domain ΩT,B

ε . There exists an operator R of order 2 whose the coefficients only
depend on the roughness h and on the topography B such that the solution ϕapp

of the Laplace equation





∆ϕapp = 0 on ΩT,B
0 ,

ϕapp = f on ΓT,B,+,

∂nϕapp = εRϕapp on ΓT,B,−
0 ,

(29)

satisfies the relation

‖ϕ− ϕapp‖Hs(ΩT,B+δ
0

) = O(ε2),

for all s ≥ 0 and for any δ > 0.

Note that this operator R will be explicitly defined using the classical normal
and tangential derivatives ∂n and ∂τ (see equation (48), page 31).

- The second possible interpretation corresponds to the existence of a not rough
boundary close to the bottom boundary ΓT,B,−

0 which allow to give an approx-
imation of ϕ at order 2 with Neumann boundary condition.

Theorem 3.3 Let ϕ be the solution on the Laplace equation (27) on the rough
domain ΩT,B

ε . There exists a function C only depending on the roughness h and
on the topography B such that the solution ϕ

app
of the Laplace equation





∆ϕ
app

= 0 on ΩT,B+εC
0 ,

ϕ
app

= f on ΓT,B+εC,+,

∂nϕapp
= 0 on ΓT,B+εC,−

0 ,

(30)

satisfies the relation

‖ϕ− ϕ
app

‖H1(ΩT,B+δ
0

) = O(ε2),

for all s ≥ 0 and for any δ > 0.

Note that in a next paragraph p. 32 the “optimal” boundary given by the
graph of the function B + εC will be numerically computed for an example of
roughness h and for a given bottom B.
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3.2 Influence of the top boundary

In this subsection, we show that the study of the section 2 may simply adapt
to the case where the upper boundary of the domain Ωε is not flat. With the
notations introduced in the previous subsection, we are interested here in the
Laplace equation (27) in the domain ΩT,0

ε where T is a regular function such
that for all x ∈ R we have T (x) ≥ Tmin > 0.
We can do exactly the same ansatz as in the flat case:

ϕ(x, y) =

N−1∑

k=0

εk ϕk(x, y) +

N∑

k=1

εk

(
k∑

j=1

∂j
xϕk−j(x, 0) ϕ̃j(X,Y )

)
+R(x, y).

The main profiles ϕk satisfy the same system as in the flat case (using ΩT,0
0

instead of Ω0) and the boundary layer profiles ϕ̃k exactly satisfy the same system
as in the flat case. The only difference stems from the top boundary condition
satisfied by the residue R since we have, using h = T (x) in the ansatz:

ϕ(x, T (x)) =
N−1∑

k=0

εk ϕk(x, T (x)) +
N∑

k=1

εk

(
k∑

j=1

∂j
xϕk−j(x, 0) ϕ̃j(X,T (x)/ε)

)

+R(x, T (x)).

Using the top boundary condition for the profiles ϕk, that is ϕ0(x, T (x)) = f(x)
and ϕk(x, T (x)) = 0 for all k ∈ {1, ..., N − 1}, we estimate the error of the
remainder using, for all j ∈ {1, ..., N}

ϕ̃j(X,T (x)/ε) ≤ e−T (x)/ε ≤ e−Tmin/ε.

In particular, we deduce from this study that the shape of the upper boundary
does not affect the conditions at the lower boundary. For example, the wall law
remains the same: ∂yϕ(x, 0) = −ε β ∂2

yϕ(x, 0) + O(ε2), the coefficient β only
depending on the geometry of the roughness (see the subsection 2.4 for some
examples of the values for this coefficient).

3.3 Influence of the bottom boundary

In the case of a more general domain ΩT,B
ε where the bottom (regardless of

roughness) is not flat, the result shown above no seems so simple.

3.3.1 Diffeomorphism and transformation of the domain

We use a diffeomorphism, denoted Φ, that transforms this domain ΩT,B
ε into the

domain Ωε studied in the first part. Using the results of the subsection 3.2, we
know that the form of the top boundary T has no influence in the description
of the boundary layer effects. Consequently, we assume for sake of simplicity
that T = B + 1, and we simply denoted by ΩB

ε the domain ΩB+1,B
ε .

The simple diffeomorphism that we consider is the following

Φ : (x, z) ∈ ΩB
ε 7−→ (x, y = z −B(x)) ∈ Ωε.

Taking into account this change of variable, we can transform the Laplace sys-
tem (1) for ϕ in a system for ψ = ϕ◦Φ−1. Indeed, the laplacian with respect to
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the variables (x, z) ∈ ΩB
ε becomes a linear operator with respect to the variables

(x, y) ∈ Ωε:
∆ϕ = div(A · ∇ψ),

where the matrix A is related to the change of variable Φ:

A =

(
1 −B′

−B′ 1 +B′2

)
. (31)

In the same way, the normal derivative on the bottom boundary of ΩB
ε , de-

noted ΓB
ε , reads

∂nϕ =

√
1 + h′2√

1 + (B′ − h′)2
(A · ∇ψ) · n. (32)

The normal n appearing in the left hand side member denotes the unitary
exterior normal vector to the domain ΩB

ε at the bottom, whereas the normal,
always denoted n, appearing in the right hand side member denotes the unitary
exterior normal vector to the domain Ωε. Similarly, the operator acting on the
function ϕ are operators with respect to the variable (x, z) whereas the operator
acting on the function ψ are operators with respect to the variable (x, y).
Now, the Laplace system (1) is written as follows:





div(A · ∇ψ) = 0 on Ωε,

ψ = f on Γ+,

(A · ∇ψ) · n = 0 on Γ−
ε .

(33)

3.3.2 Elliptic operator

In this subsection, we determine the first terms in the expansion of the solution
of a system of type (33) with respect to the parameter ε. The principle is
similar to the case of the Laplace equation (1) studied in the first part. The
main difference is that we can not write the correction terms (in the boundary
layer) as products of terms oscillating terms and “slow” terms. Indeed, the
development take the following form

ψ(x, y) =

N−1∑

k=0

εk ψk(x, y) +

N∑

k=1

εk ψk(x,X, Y ) +R(x, y). (34)

We present here the equations satisfied by the first terms of development only,
the other terms are treating the same way (see for instance the case studied in
the first part).
Step 1: Elliptic equation

For a generic function ψ depending on the slow variable x and on the variables(
X =

x

ε
, Y =

y

ε

)
, we have

div
(
A · ∇

(
ψ
(
x,
x

ε
,
y

ε

)))
=

1

ε2
d̃iv(A · ∇̃(ψ)) +

1

ε
d̃iv(A · ∇(ψ))

+
1

ε
div(A · ∇̃(ψ)) + div(A · ∇(ψ)),
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where the notations d̃iv and ∇̃ correspond to the operators with respect to the
variables (X,Y ), whereas the classical notations div and ∇ correspond to the
operators with respect to the variables (x, y). We can now use the ansatz (34)
into the first equation of the system (33). We conclude, after separating the
different powers of ε, and after separating fast and slow variables:

∣∣∣∣∣∣∣∣∣∣

div(A · ∇ψ0) = 0 on Ω0,

div(A · ∇ψ1) = 0 on Ω0,

d̃iv(A · ∇̃(ψ1)) = 0 on ω,

d̃iv(A · ∇̃(ψ2)) = f on ω,

where the source term is given by f = − d̃iv(A · ∇(ψ1)) − div(A · ∇̃(ψ1)).
Step 2: Bottom boundary condition

On the bottom boundary Γ−
ε , the Neumann boundary condition is written (up

to a normalization)

−(A · ∇ψ) · n = h′[A · ∇ψ]1 + [A · ∇ψ]2 = 0.

We use the Taylor developments for the functions A ·∇ψk to deduce A ·∇ψk

∣∣
Γ−

ε

as an approximation of A ·∇ψk

∣∣
Γ−

0

= (A ·∇ψk)o where for sake of simplicity we

denote by the “power” o a function evaluated for (x, y) = (x, 0). We plug the
ansatz into the bottom boundary condition. For the first orders with respect to
the power of ε, we obtain

h′[A · ∇ψ0]
o
1 + [A · ∇ψ0]

o
2 + h′[Ao · ∇̃ψ1]1 + [Ao · ∇̃ψ1]2

+ ε
(
− hh′∂y[A · ∇ψ0]

o
1 − h∂y[A · ∇ψ0]

o
2 − hh′[∂yA

o · ∇̃ψ1]1

− h[∂yA
o · ∇̃ψ1]2 + h′[Ao · ∇̃ψ2]1 + [Ao · ∇̃ψ2]2

+ h′[A · ∇ψ1]
o
1 + [A · ∇ψ1]

o
2 + h′[Ao · ∇ψ1]1 + [Ao · ∇ψ1]2

)
= O(ε2).

Separating the fast and slow variables, we obtain:

∣∣∣∣∣∣∣∣∣∣

[A · ∇ψ0]2 = 0 on Γ−
0 ,

[A · ∇ψ1]2 = −β2 on Γ−
0 ,

h′[Ao · ∇̃ψ1]1 + [Ao · ∇̃ψ1]2 = −h′[A · ∇ψ0]
o
1 on γ,

h′[Ao · ∇̃ψ2]1 + [Ao · ∇̃ψ2]2 = g + β2 on γ,

where the source term is given by

g =hh′∂y[A · ∇ψ0]
o
1 + h∂y[A · ∇ψ0]

o
2 + hh′[∂yA

o · ∇̃ψ1]1

+ h[∂yA
o · ∇̃ψ1]2 − h′[A · ∇ψ1]

o
1 − h′[Ao · ∇ψ1]1 − [Ao · ∇ψ1]2,

and where the coefficient β2 (which depends on x) will be specified later so that
the solution ψ2 has no influence in the main domain Ω0.

Step 3: Systems satisfied by the first profiles
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We conclude that the system must check the first profiles ψ0, ψ1, ψ1 and ψ2.
The main term ψ0 satisfies the system without roughness:





div(A · ∇ψ0) = 0 on Ω0,

ψ0 = f on Γ+,

[A · ∇ψ0]2 = 0 on Γ−
0 .

(35)

This term creates an error in the rough layer, which is corrected using ψ1:
{

d̃iv(Ao · ∇̃(ψ1)) = 0 on ω,

h′[Ao · ∇̃ψ1]1 + [Ao · ∇̃ψ1]2 = −h′[A · ∇ψ0]
o
1 on γ.

(36)

This corrector depends on the rescaled variables (X,Y ) and rapidly decreases
in the main domain (that is when Y tend to +∞). Moreover, it depends on the
variable x and must be corrected using ψ2:

{
d̃iv(Ao · ∇̃(ψ2)) = f on ω,

h′[Ao · ∇̃ψ2]1 + [Ao · ∇̃ψ2]2 = β2 + g on γ.

The choice of the function β2 (only depending on x) allow us to ensures that
this correction rapidly tends to 0 in the main domain. Using the result of the

Lemma 2.2 (which is valid for the operator d̃iv(Ao · ∇̃) - the proof is similar to
those of the Lemma 2.2), we deduce that

β2(x) = −
∫

{Y <0}

f(x,X, Y ) dXdY −
∫

T

g(x,X) dX. (37)

Finally, the next corrector ψ1 take into account this coefficient:




div(A · ∇ψ1) = 0 on Ω0,

ψ1 = 0 on Γ+,

[A · ∇ψ1]2 = −β2 on Γ−
0 .

3.3.3 Asymptotic development in the non flat case

In the interesting case where the matrix A is given with respect to the bottom
topography B, see equation (31), the first corrector ψ1 satisfies
{
∂2

Xψ1 − 2B′∂2
XY ψ1 + (1 +B′2)∂2

Y ψ1 = 0 on ω,

h′(∂Xψ1 −B′∂Y ψ1) + (−B′∂Xψ1 + (1 +B′2)∂Y ψ1) = −h′[A · ∇ψ0]
o
1 on γ.

(38)
We will note however that this case presented to the peculiarity of having a
matrix does not depend on the variable y, that simplify some calculus. For
instance the contribution ψ2(x,X, Y ) satisfies
{
∂2

Xψ2 − 2B′∂2
XY ψ2 + (1 +B′2)∂2

Y ψ2 = f on ω,

h′(∂Xψ1 −B′∂Y ψ1) + (−B′∂Xψ2 + (1 +B′2)∂Y ψ2) = β2 + g on γ.
(39)

where the source terms are given by

f = −2∂2
xXψ1 + 2B′∂2

xY ψ1 +B′′∂Y ψ1 and

g = −(h′ −B′)∂xψ1 + hh′∂y[A · ∇ψ0]
o
1 + h∂y[A · ∇ψ0]

o
2 − h′[A · ∇ψ1]

o
1.
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Remark 3.1 Using the change of variable Z = Y +B ′(x)X, the contributions
of the boundary layer terms as ψ1(x,X, Y ) reads ψ1(x,X, Y ) = u1(x,X,Z)
where the function u1 solves

{
∆u1 = 0 on ωB,

(h′(X) −B′(x))∂Xu1 + ∂Zu1 = −h′ [A · ∇ψ0]1(x, 0) on γB,

where ωB := {Z > B′(x)X − h(X)} and γB := {Z = B′(x)X − h(X)}.

The coefficient β2, that is to say that which occurs at the main order in the wall
law, can be calculated from the averaging of the source terms f and g (using
the formulation (37)).

- The average of the source term g is given by:
∫

T

g(x,X) dX = −∂x

(∫

T

h′(X)ψ1(x,X,−h(X)) dX
)

+B′(x)∂x

(∫

T

ψ1(x,X,−h(X)) dX
)

+m(h)∂y[A · ∇ψ0]
o
2,

where we recall that the notationm(h) stands for the averagem(h) =
∫

T
h(X) dX .

To simplify this expression, we proceed as follows. First, we multiply the first
equation of the system (38) by Y and integrate over the set {Y < 0}. Using
integrations by parts and the boundary condition corresponding to the second
equation of the system (38) we obtain

B′(x)

∫

{Y <0}

∂Xψ1(x,X, Y ) dXdY = (1+B′(x)2)

∫

{Y <0}

∂Y ψ1(x,X, Y ) dXdY.

(40)
Next, as in the flat case we note that

∫

{Y <0}

∂Xψ1(x,X, Y ) dXdY = −
∫

T

h′(X)ψ1(x,X,−h(X)) dX. (41)

In the same way we deduce that (recalling that from the Fourier analysis, we
have

∫
T
ψ1(x,X, 0) dX = 0)

∫

{Y <0}

∂Y ψ1(x,X, Y ) dXdY = −
∫

T

ψ1(x,X,−h(X)) dX. (42)

The equality (40) is then written
∫

T

ψ1(x,X,−h(X)) dX =
B′(x)

1 +B′(x)2

∫

T

h′(X)ψ1(x,X,−h(X)) dX.

As in the flat case again, this quantities can by connected with an energy:

E(h, x) :=

∫

ω

(A · ∇̃v) · ∇̃v, (43)

where v(x,X, Y ) is the solution of the following system

{
d̃iv(A · ∇̃v) = 0 on ω,

h′[Ao · ∇̃v]1 + [Ao · ∇̃v]2 = −h′ on γ.
(44)
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Since ψ1 = [A · ∇ψ0]
o
1 v, we obtain

∫

T

h′(X)ψ1(x,X,−h(X)) dX = [A · ∇ψ0]
o
1E(h, x).

- The average of the function f is defined by

∫

{Y <0}

f(x,X, Y ) dXdY = − 2∂x

(∫

{Y <0}

∂Xψ1(x,X, Y ) dXdY
)

+ 2B′(x)∂x

(∫

{Y <0}

∂Y ψ1(x,X, Y ) dXdY
)

+B′′(x)

∫

{Y <0}

∂Y ψ1(x,X, Y ) dXdY.

Using the relation (41) and (42) we can add the averages of the functions g
and f . We deduce an expression for the coefficient β2:

β2(x) = −m(h) ∂y[A · ∇ψ0]
o
2 − ∂x

(
E(h,B′)[A · ∇ψ0]

o
1

)
,

where the quantity E is defined by E(h,B′) =
E(h, x)

1 +B′(x)2
.

Since the main profile ψ0 satisfies the equation (35), we have ∂x[A · ∇ψ0]1 +
∂y[A · ∇ψ0]2 = 0. We can define β2 as follows

β2(x) =
(
E(h,B′) −m(h)

)
∂y[A · ∇ψ0]

o
2 − ∂x

(
E(h,B′)

)
[A · ∇ψ0]

o
1. (45)

3.3.4 Wall law taking into account the geometry

In this subsection, we will see that the asymptotic development (34) and the
boundary conditions satisfied by each profile allow to obtain an effective bound-
ary condition at order 1. We then prove the Theorem 3.2.

More precisely, using the boundary conditions satisfied by the first term of the
development of ψ, we have

[A · ∇ψ]o2 = −ε β2 + O(ε2). (46)

This relationship between derivatives with respect to variables (x, y) of the func-
tion ψ at the boundary {y = 0} can be interpreted using a relation between the
derivatives of the function ϕ with respect to the variables (x, z) at the boundary
{z = B(x)} and next with respect to the variables (n, τ) corresponding to the
normal and tangential coordinates.

For instance, we have the following equalities, holds on the boundary {y = 0} =
{z = B(x)}:

∂nϕ =
1√

1 +B′2

(
B′∂xϕ− ∂zϕ

)
=

−1√
1 +B′2

[A · ∇ψ]o2,

∂τϕ =
1√

1 +B′2

(
∂xϕ+B′∂zϕ

)
=

1√
1 +B′2

∂xψ.
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Similarly, we can obtain the following formulae of “change of variables”:

∂2
nϕ−B′∂2

nτϕ− B′B′′

(1 +B′2)3/2
∂τϕ = ∂y[A · ∇ψ]2,

∂τϕ+B′∂nϕ =
√

1 +B′2[A · ∇ψ]1.

Finally, the relation (46) is written

∂nϕ = εRϕ+ O(ε2) (47)

where the operator R is defined by

Rϕ =
E −m√
1 + B′2

(
∂2

nϕ−B′∂2
nτϕ− B′B′′

(1 +B′2)3/2
∂τϕ

)
− ∂xE

1 +B′2

(
∂τϕ+B′∂nϕ

)
.

(48)

Remark 3.2 This wall law is a generalization of the flat case (B ′ = 0) for
which we find the law (5). This general law make naturally appear the slope
of the bottom (that is the quantity B′) and the curvature of the bottom (that is
B′′/(1 +B′2)3/2).

3.4 Application to the water waves

In this subsection we give an example of application and in the same time we
prove the Theorem 3.3.

The Neumann boundary conditions are very frequently used. For instance,
in fluid mechanics such a condition is natural if we consider that the velocity
field u is tangential to the boundary: u · n = 0, and it derives from a potential:
u = ∇ϕ. This approach allows us to “simply” write a flow of an incompressible
and irrotational fluid with free surface.

More precisely, the water wave equation describes the evolution of the water
surface, parameterized by the function T . It reads





∂tT = G(T,B)f

∂tf + g T +
1

2
(∂xf)2 − (G(T,B)f + ∂xT ∂xf)2

2(1 + (∂xT )2)
= 0.

(49)

In this system, the function B describes the bathymetry and the operatorG(T,B)
corresponds to the following Dirichlet-Neumann operator

G(T,B)f =
√

1 + (∂xT )2 ∂nϕ

where ϕ is the solution of the following Laplace problem




− ∆ϕ = 0 on ΩT,B ,

ϕ = f on ΓT,B,+,

∂nϕ = 0 on ΓT,B,−.

(50)

The formulation (49) of the water waves equation corresponds to the Hamilto-
nian exhibited by Zakharov [22] and was written first under this form by Craig
and Sulem [10]. Moreover, first existence results for such a system is given by
David Lannes in [16].
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Fictitious bathymetry The goal of the paragraph is to show that if the
bottom of the domain is rough (with periodical roughness of size ε as studied
in the previous sections) then you can use a virtual not rough bottom to obtain
an error of order ε2 on the height of the water.

We are thus first interested in the system (27), that is the system (50) with a
rough domain ΩT,B

ε . For any regular function C, consider the following surface

defined as a perturbation of the bottom surface ΓT,B,−
0 :

Σ =
{
(x, z) ∈ R

d−1 × R ; z = B(x) + ε C(x)
}
.

The normal derivative of ϕ along this surface is written

∂nϕ
∣∣∣
Σ

=
1√

1 + (B′ + ε C ′)2

(
(B′ + ε C ′)∂xϕ(x,B + ε C) − ∂zϕ(x,B + ε C)

)
.

Using the Taylor development, we obtain

∂nϕ
∣∣∣
Σ

= ∂nϕ
∣∣∣
ΓT,B,−

0

+
ε√

1 +B′2

(
B′C∂2

xzϕ+ C ′∂xϕ− C∂2
zϕ
)

− εB′C ′

1 +B′2
∂nϕ

∣∣∣
ΓT,B,−

0

+ O(ε2).

Using the relation (46) we have ∂nϕ
∣∣∣
ΓT,B,−

0

=
ε β2√

1 +B′2
+ O(ε2). We obtain

∂nϕ
∣∣∣
Σ

=
ε√

1 +B′2

(
β2 + C(B′∂2

xzϕ− ∂2
zϕ) + C ′∂xϕ

)
+ O(ε2).

In term of variables (x, y), that is using the function ψ we have

∂nϕ
∣∣∣
Σ

=
ε√

1 +B′2

(
β2 − C ∂y[A · ∇ψ]o2 + C ′ [A · ∇ψ]o1

)
+ O(ε2).

Now, according to the expression of β2 given by the formula (45) if we take
C = E −m then ∂nϕ

∣∣
Σ

= O(ε2). Finally, to obtain an approximation of the

solution to the Laplace equation in ΩT,B
ε at order ε2, we can study the same

problem with the classical Neumann boundary condition on a not rough domain
slightly different from ΩT,B

0 :

ΩT,B+εC
0 =

{
(x, z) ∈ R

d−1 × R ; B(x) − ε (m(h) − E(h,B′)) < z < T (x)
}
.

In conclusion, the Dirichlet-Neumann operator G[T,B − εh(·/ε)] used in the
formulation of the water wave equation can be approximated to order ε2 by
the Dirichlet-Neumann operator G[T,B − ε(m(h) − E(h,B ′))]. Note that some
similar developments of the Dirichlet-Neumann operator are given in [17]. The
authors prove that using such developments it is possible to derive the Green-
Naghdi equations (also called Serre or fully nonlinear Boussinesq equations).

Some numerical experiments The above result indicates that we can sig-

nificantly improve the approximation using the domain Ω
B

instead of using the
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domain Ω0. To really determine the domain Ω
B

, we must know how to calcu-
late the energy E from the data of the shape of the roughness h and the average
shape of the bottom B.
To calculate this energy E , we must first solve the equation (44) and then esti-
mate E defined by the relation (43). The graphic 7 provides results of numerical
simulations in the case of sinusoidal roughness (precisely h(X) = sin(2πX)) and
for different slopes B′.
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Figure 7: Function B′ 7→ E given the energy with respect to the slope of the
bottom, the form of the roughness being fixed.

Knowing the energy E as a function of the slope B′, it is easy to determine the

domain Ω
B

. The figure 8 provides an example of a rough bottom, approximated
by its average value z = B(x) and approximated by the “ideal” surface z =
B(x) − ε(m(h) − E(h,B′(x)).
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Figure 8: Example of real bottom (oscillating - without error), mean-average
approximation (error of order ε) and virtual boundary (red line - error of order
ε2).
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4 Conclusion

In this paper we have considered a Laplace system with a Neumann condition
on a rough boundary. We obtained a development of the solution to any order
when the frequency and amplitude of the roughness becomes smaller. The first
orders are interpreted in two ways.
- We first show that we can approximate (to order 2) the “rough” solution
through a “smooth” solution provided to introduce a peculiar boundary condi-
tion on the smooth boundary.
- We also show that we can make such an approximation by imposing still a
Neumann condition on the smooth boundary, even slightly modify this smooth
boundary (without adding roughness).

Several points indicate the originality of these approximations. On the one
hand, they are explicit in the sense that it is possible to calculate precisely the
wall law depending on the shape of the roughness (numerical simulations con-
firm this point). On the other hand, these results are fundamentally different
from those obtained for Dirichlet conditions: In the Neumann case, the wall law
absorb the excess of energy created by the roughness.

Several prospects in this work may be considered, in particular concerning the
assumption of roughness. In the present paper, they are supposed to be periodic
and defined as the graph of a regular function. It seems interesting to study
the random roughness case, as it has been recently studied for the Dirichlet
boundary conditions, see [4, 13, 14]. Another interesting case is the case where
the application h which defines the roughness is not regular. For example when
we wish to model roughness in the form of pulses (the function h is only L∞).
It does not seem obvious to adapt the arguments used in the present article.
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project ANR-08-JCJC-0104-01 : RUGO (Analyse et calcul des effets de rugosités
sur les écoulements).
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